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Abstract 
The crown class assessment is a key element in forestry practice. It is a traditional method that finds application in 

thinning plans, assessment of site index, tree competition, or crown condition. Assigning trees into a given class is done during 
field surveys and requires precision and experience to avoid inaccuracy. Therefore, Kraft’s system has often been criticized and 
modified. Thus, in our study, we aimed to analyse whether the directly measured traits of trunk and crown of oak trees (Quercus 
robur L.) can be applied to crown class assessment. For this purpose, we used the principal component analysis (PCA) and 
nonlinear kernel principal component analysis (KPCA) based on measurable traits of trunk and crown, i.e., the height of the 
tree, the diameter at breast height, the length of the crown, and the field crown projection area. In total, we measured 286 mature 
trees in three oak stands located in western Poland. Results indicate that all chosen traits of trunk and crown allowed, though 
not always perfect, to assign the trees into given crown classes. The greatest contribution to crown class distinction had the 
diameter at breast height and the parameters of crown, i.e., and the field crown projection area. Furthermore, results show that 
the best method of assigning the trees into biosocial classes is the KPCA Gauss, considering the percentage explanation of the 
total variability, and KPCA Laplace, considering the visual division. In the latter, the multivariate analysis resulted in a similar 
crown class assignment as the field-assigned method. However, its application requires measurements that make it neither 
cheaper nor faster than a traditional crown class assessment. It indicates that a traditional field-assigned method, despite its 
subjectivity, should continue to be of great importance in forestry practice. Moreover, the alternative traits of trunk and crown 
can be a potentially useful statistical substitute for crown class assessment.

Keywords: crown class, oak stand, trunk and crown traits, multivariate methods

Introduction
Light availability is a key component in forest eco-

systems. It is often the limiting factor in the survival of 
trees or their growth in both hardwood forests and trop-
ical rainforests (Kunstler et al. 2009, Sterck et al. 2013). 
Moreover, competition for light causes different strategies 
of trees to space-filling manifested in terms of its growth 
dynamics, height, diameter at breast height (DBH), crown 
size, and morphology (Pretzsch 2014). Kraft (1884) used 
knowledge of such adaptation to divide trees into classes 

due to their social position in the stand. Crown classes are 
originally devised for pure even-aged stands or those com-
posed of species with the same height regimes (Smith et al. 
1997) and can define thinning type, its intensity, site index 
(Husch et al. 1982), tree mortality, succession patterns, tree 
competition (Ward and Stephens 1993) or leaf area distri-
bution (Gilmore and Seymour 1997).

Trees are classified according to their heights, po-
sition in the forest stand, and crown morphology (Bur-
schel and Huss 1997). This approach allows grouping the 
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trees of the same ‘energy growth’ (Kraft 1884). There are 
(I) predominant trees – clearly higher than the surround-
ing trees visibly protruding above the general level of the 
canopy, with strongly developed crowns; (II) dominant 
trees – forming the general upper level of the canopy 
with relatively well-developed crowns; (III) codominant 
trees – slightly lower than the prevailing, with clearly less 
developed crowns and the side confining; (IV) dominated 
trees – significantly lower than the general level of the can-
opy, overshadowed with a badly shaped confining crowns 
and free tops in the middle storey; (V) suppressed trees – 
completely overtopped with alive (shade-tolerant trees), 
dying or dead crowns (Kraft 1884, Burschel and Huss 
1997). Trees of the I–III class compose the so-called dom-
inant stand whilst those of class IV and V the dominated 
stand (Jaworski 2004).

Tree crown position as it relates to dominance in the 
forest stand varies slightly in accordance with different 
monitoring methods. Smith et al. (1997) distinguished, 
after Kraft, dominant, codominant, intermediate, and sup-
pressed trees. Dominant and codominant trees are the larg-
est trees and form the general level of the stand canopy. 
Intermediate and suppressed trees are the smallest trees 
and generally are overtopped by dominant and codomi-
nant trees (Smith et al. 1997). According to International 
Co-operative Programme on Assessment and Monitoring 
of Air Pollution Effects on Forests, social status assessment 
is determined using five classes: dominant, codominant, 
subdominant, suppressed, and dying trees (Eichhorn et al. 
2010). Other systems developed, i.e. from tending meth-
ods of selective thinning (Rittershofer 1999, Röhrig et al. 
2006).

Practical difficulties in biosocial class assessment 
come from its subjective estimation. That is why Kraft’s 
system has often been criticized and modified. Assigning 
trees into a given class is done in the forest and its accu-
racy depends on human experience and judgments rather 
than on strict values. That is why many attempts have been 
done to improve it. Excluding modified Kraft’s systems, 
the attempts concerned statistical methods based on dif-
ferent tree traits. These traits are directly correlated with 
the biosocial position of tree. Bechtold (2003) replaced 
crown class with two alternatives, more repeatable, vari-
ables – crown position and crown light exposure. Nigh 
and Love (2004) used the diameter at breast height, the 
height of tree, and the length of the crown together with 
light model tRAYci to predict crown classes. Similar traits 
with additional variables such as slenderness, height incre-
ment, tree basal area, and field crown projection area were 
also tested in the linear discriminant analysis (LDA) and 
nonlinear kernel discriminant analysis (NKDA) (Zawieja 
and Kaźmierczak 2015, 2016, Kaźmierczak and Zawieja 
2016). However, those analyses required prior knowledge 
of crown classes at least for a sample group.

Presented literature indicates that traditional as-
sessment of crown classes (hereinafter referred to as the 

field-assigned method) depends on human accuracy and 
judgments. It also suggests that it can be replaced by statis-
tical methods based on different tree features. Thus, in our 
study, we aimed to analyse whether the directly measured 
traits of trunk and crown of oak trees (Quercus robur L.) 
can be applied to crown class assessment. Among all tested 
features, we selected those strictly connected with the bio-
social position of the tree and those frequently measured 
during the forest surveys, i.e. the height of the tree, the di-
ameter at breast height, the length of the crown, and the 
field crown projection area. For this purpose, we used mul-
tivariate methods that do not require prior knowledge of 
field-assigned crown classes. We assumed it will allow us 
to assign the trees into crown classes both in plots with and 
without a priori known biosocial position. Our study ex-
pands the results of previously conducted research, i.e. by 
Bechtold (2003), Nigh and Love (2004), and Kaźmierczak 
and Zawieja (2016). It also brings a new light to forestry 
practice as the crown class assessment is of great impor-
tance in silviculture.

Material and methods
Study plots
We conducted our research using the data from three 

study plots established in three separate oak stands (Q. ro-
bur L.). The first plot with an area of 0.75 ha represented a 
135-year-old oak stand in a moderately moist broadleaved 
forest (1). The second plot (0.25 ha) was established in 
a 97-year-old oak stand in a mesic mixed broadleaved 
forest (2). The third plot (0.10 ha) was established in a 
100-year-old stand in a mesic mixed broadleaved for-
est (3). In total, we measured 286 oak trees: 152 (1), 84 (2), 
50 (3). The stands were situated in Zielonka Experimen-
tal Forest District (1 and 2) and Piaski Forest District (3), 
western Poland.

Study design
Within all three plots, we measured the height of 

trees (H) and the heights of live crown basis (CBH) using 
a Suunto altimeter, with 0.1 m accuracy; the diameter at 
breast height (DBH) was measured based on two measure-
ments taken along the cardinal directions N-S and W-E and 
pooled out as arithmetic mean with 0.1 cm accuracy; the 
length of the crown (CL) was calculated as a difference 
between tree height (H) and the height of live crown ba-
sis (CBH); and field crown projection area (CPA) as a po-
lygonal area with projections of characteristic points of the 
crown assessed with a mirror-based crown projector. The 
CPA was calculated using a polar method (Lemke 1966).

The basic values of measured traits, i.e. mean, maxi-
mum and minimum values (min–max), and standard devia-
tion (SD), we collated in Tables 1–3. Moreover, within two 
stands (plots 1 and 2; Tables 1–2) we used the traditional 
field-assigned method to visually assess the crown classes 
after Kraft (1884).
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Data analysis
In our study we used two multivariate methods to as-

sign the trees into Kraft’s classes, i.e. the principal com-
ponent analysis, PCA (Krzanowski 2000, Krzyśko 2009) 
and nonlinear kernel principal component analysis, KPCA 
(Schölkopf et al. 1997, 1998, Wang 2012). The analyses 
were based on measurable traits of trunk and crown (H, 
DBH, CL, and CPA).

The main aim of the PCA analysis is the reduction of 
dimensionality while maintaining most of the total vari-
ability of analysed traits. As a result, new variables are cre-
ated which constitute a linear combination of all the traits. 
The coefficients of the linear equations are determined to 
maximize the variance of successive components (PCs). 
Hence, PC1 explains the largest part of the variance, PC2 
the largest part of the remaining variance, etc. Consequent-
ly, the sum of the variances of all PCs equals the sum of the 
variances of all the traits. The absolute values of the coef-
ficients of individual linear equations present the contribu-
tion of a given trait to the main component. Hence, if the 
equation below is the i-th principal component (PCi), i.e.
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Assignment of crown classes based on measured traits 
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For analysis, we have chosen the first two PCs which 

together explained the highest percentage of the total 
variability. The results that we presented in biplots (Fig-
ures 1–3, see also Table 4) show the objects in the form 
of points in the new coordinate system PC1 and PC2, and 

Crown 
class

No. of 
trees

Mean ± SD (min–max)
DBH H CL  CPA

I 11 59.04 ± 6.28
(47.30–65.90)

32.27 ± 1.31
(29.70–34.60)

15.16 ± 2.41
(12.10–18.40)

103.72 ± 26.74
(61.94–139.06)

II 100 44.15 ± 7.12
(31.15–65.00)

30.01 ± 1.33
(25.40–33.30)

11.20 ± 2.24
(6.50–15.90)

37.38 ± 17.52
(7.25–95.50)

III 26 35.10 ± 6.52
(25.95–51.05)

26.37 ± 1.35
(22.50–28.40)

8.48 ± 1.75
(4.30–11.10)

23.06 ± 11.55
(7.40–49.56)

IV 15 21.20 ± 4.08
(12.10–26.45)

19.91 ± 3.98
(11.50–24.70)

6.23 ± 2.04
(2.30–9.30)

15.64 ± 7.78
(2.21–30.54)

All 152 41.41 ± 10.93
(12.10–65.90)

28.55 ± 3.70
(11.50–34.60)

10.53 ± 3.00
(2.30–18.40)

37.58 ± 26.06
(2.21–139.06)

Table 1. Basic values of 
measured traits within the 
135-year-old oak stand (plot 1)

Crown 
class

No. of 
trees

Mean ± SD (min–max)
DBH H CL  CPA

I 9 34.78 ± 2.35
(31.75–39.50)

23.78 ± 0.71
(22.30–24.50)

8.11 ± 1.92
(5.20–11.40)

21.69 ± 4.15
(14.45–26.43)

II 55 31.17 ± 5.28
(21.25.0–45.0)

23.27 ± 1.49
(19.20–26.00)

6.59 ± 2.09
(2.70–11.40)

15.17 ± 6.79
(2.79–32.96)

III 15 23.20 ± 4.43
(14.75–32.25)

21.02 ± 2.39
(18.10–24.40)

5.67 ± 1.62
(3.60–9.10)

7.35 ± 2.94
(2.95–13.51)

IV 5 14.00 ± 0.79
(12.75–14.75)

16.00 ± 1.32
(13.90–17.40)

3.60 ± 0.77
(2.60–4.40)

5.31 ± 2.36
(1.64–7.53)

All 84 29.11 ± 6.95
(12.75–45.00)

22.49 ± 2.46
(13.90–26.00)

6.41 ± 2.14
(2.60–11.40)

13.88 ± 7.29
(1.64–32.96)

Table 2. Basic values of 
measured traits within the 
97-year-old oak stand (plot 2)

No. of trees
Mean ± SD (min–max)

DBH H CL  CPA
50 37.52 ± 5.42

(28.60–52.30)
24.54 ± 3.03

(17.80–30.80)
13.25 ± 4.01
(4.70–23.30)

35.12 ± 17.45
(7.36–88.93)

Table 3. Basic values of 
measured traits within the 
100-year-old oak stand (plot 3)

traits (H, DBH, CL, and CPA) as vectors, which length 
was determined by the coefficients from equation (1). The 
analysis of biplots shows the contribution of the individual 
traits to the arrangement of points on the chart. To perform 
the PCA analysis, we standardized the original data sepa-
rately for each trait.

In the KPCA analysis we also standardized data and 
then we determined the kernel matrix using different kernel 

functions, i.e. Chi-squared 
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. Then, for transformed data, we 
performed the usual principal component analysis (Derę-
gowski and Krzyśko 2014) (Figures 1–3).

The PCA and KPCA analyses reduced the multidi-
mensionality represented by the values of H, DBH, CL, 
and CPA into two dimensions that allow visually dividing 
the data into groups, i.e. subsequently separated by dashed 
lines into biosocial classes (Figures 1–3). Next, we deter-
mined the erroneous probabilities allowing us to choose 
functions presenting the division of trees into crown class-
es closest to the original assessment. As Kraft’s classes for 
the third plot were not field-assigned, therefore, the proba-
bility of incorrect classification cannot be determined.

Additionally, we prepared “matchstick” charts (own 
idea) as a model that visually determines the proportions of 
trees assigned to different Kraft’s classes in all three plots. 
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Figure 1. The PCA and KPCA biplots for the first plot
Each symbol stands for a separate crown class: Δ – I class, 

15 
 

 

  
 – II class, 

15 
 

 

  
 – III class, and 

15 
 



 

 – IV class. Crown classes are also separated by dashed 
lines. Each graph corresponds to a given analysis: a) PCA, b) KPCA Chi-squared, c) KPCA Laplace, d) KPCA Gauss.

Figure 2. The PCA and KPCA biplots for the second plot
Each symbol stands for a separate crown class (similarly to Figure 2): Δ – I class, 

15 
 

 

  
 – II class, 

15 
 

 

  
 – III class, and 

15 
 



 

 – IV class. Crown classes are also 
separated by dashed lines. Each graph corresponds to a given analysis: a) PCA, b) KPCA Chi-squared, c) KPCA Laplace, d) KPCA Gauss.



161

BALTIC FORESTRY 27(1) THE USE OF MEASURABLE TRAITS OF TRUNK AND CROWN TO ASSESS /.../ ZAWIEJA, B. ET AL. 

Figure 3. The PCA and KPCA biplots for the third plot
Crown classes are separated by dashed lines. Each graph corresponds to a given analysis: a) PCA, b) KPCA Chi-squared, c) KPCA Laplace, 
d) KPCA Gauss.

The first plot The second plot The third plot
DBH H CL CPA DBH H CL CPA DBH H CL CPA

PC1 0.94 0.84 0.87 0.83 0.92 0.82 0.83 0.82 0.87 0.75 0.49 0.86
PC2 0.09 –0.47 –0.15 0.53 –0.01 0.51 0.01 –0.49 0.31 –0.29 –0.79 0.39

Table 4. Contribution of 
traits to PCs in the PCA 
analysis

Figure 4. Probabilities of belonging to Kraft’s classes (left 
panel) and probabilities of misclassifications (right panel)
The ordinate (y) axis presents values of probabilities, and the abscissa 
(x) axis shows crown classes.
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Figure 5. Visual assignment of tress into Kraft’s classes
Matches present the DBH, H, CL, and CPA of trees. The handle of 
each match shows the diameter at breast height (DBH), the height of 
the entire match shows the height of the tree (H), the head presents the 
length of the crown (CL) and field crown projection area (CPA).

The model allows comparing the results of multivariate 
analysis with the original fi eld-assigned method (Figure 5).

We performed the analysis using Scilab software 
(https://www.scilab.org/).

Results
Assignment of crown classes based on measured 

traits
The fi rst plot
In the fi rst plot, all four traits had a similar eff ect on 

the crown class distinction. The fi rst two PCs in the PCA 
analysis explained 89% of the total variability (PC1 – 75%, 
PC2 – 14%) (Figure 1). The greatest contribution to PC1 
had DBH (0.94) whilst on PC2 H and CL (–0.47 and 0.53, 
respectively) (Table 4). All the traits are directed to the side 
with the points representing the trees with the highest val-
ues, class I, the trees on the opposite side have the lowest 
values of given traits, class IV (similarly to further plots). 
The CPA and DBH allowed to distinguish clearly the I, IV, 
and partially III classes. The greatest impact on the separa-
tion of the II class had the variable of H.

In the KPCA method, PCs explained 89%, 53%, and 
99% of total variability, when the Chi-squared, Laplace, 
and Gauss functions were used sequentially. The PC1 
explained from 39 to 93% variability whilst PC2 from 6 
to 14% (Figure 1). Consequently, it resulted in the visu-
al separation of groups. The clearest visual division gave 
the KPCA Laplace. It allowed separating all classes lin-

early, although both PCs explained only 53% of the total 
variability.

The second plot
In the second plot, all four traits had also a similar eff ect 

on the distinction of crown classes. The PCA analysis ex-
plained 85% of the total variability (PC1 – 72%, PC2 – 13%) 
(Figure 2). The greatest contribution to PC1 had DBH (0.92) 
whilst on PC2 H and CPA (0.51 and –0.49, respectively) (Ta-
ble 4). The variables of DBH and CL aff ected the clearest 
crown class separation. The variable of H had the greatest 
contribution to PC2 and the distinction of the IV class.

In the KPCA analysis, the Gauss and Chi-squared ker-
nel functions explained best the total variability, i.e. 96% 
and 86%, respectively. Again, two PCs in the KPCA Laplace 
explained only 49% of the total variability. PC1 explained 
from 36 to 83% variability and PC2 from 13 to 14%. Re-
sults indicate that in this plot it was diffi  cult to separate the 
I and II crown classes. Again, the best visual division gave 
the KPCA Laplace that additionally allowed to distinct the 
I class (Figure 2).

The third plot
In the third plot, the PCs in the PCA analysis explained 

82% of the total variability (PC1 – 58%, PC2 – 24%) (Fig-
ure 3). Three traits (DBH, CL, CPA) had a similar eff ect 
on the crown class distinction. The greatest contribution 
to PC1 had DBH (0.87) and CPA (0.86) whilst on PC2 the 
greatest contribution had CL (–0.79) (Table 4).
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The KPCA analysis showed similar results as in the 
previous plots. PCs explained 96% (Gauss) and 84% (Chi-
squared) of the total variability, whilst only 42% when the 
Laplace function was used. PC1 explained from 27 to 91% 
variability and PC2 from 5 to 28% (Figure 3). Again, the 
clearest visual class separation gave the Laplace kernel 
function.

The comparison of crown class assignment
Results show that the best method of assigning the 

trees into biosocial classes is the KPCA Gauss (considering 
the percentage explanation of the total variability). Similar 
results gave also the KPCA Chi-squared and PCA analy-
ses. However, the probabilities of misclassifications gave 
the lowest results both in the first (16%) and the second 
plot (25%) for the KPCA Laplace. For this function, the 
probabilities of belonging to crown classes were nearby 
to a priori probabilities. The empirical probabilities of 
trees belonging to Kraft’s classes in the first and the sec-
ond plot amounted to 0.07–0.11 in the I, 0.65–0.66 in the 
II, 0.17–0.18 in the III, and 0.06–0.10 in the IV classes 
(Figure 4, left side, a priori). These proportions were re-
flected best by the KPCA Laplace in the first plot, KPCA 
Chi-squared in the second, KPCA Laplace and Gauss in 
the third plots (Figure 4, left side). Moreover, in the third 
plot, the empirical probabilities of trees belonging to the I 
and IV Kraft’s classes, for most of the functions, were like 
results obtained in the first and second plots. Unfortunate-
ly, the probabilities of belonging to the II and III classes 
differed substantially. They were lower by about 0.3 for the 
II, and higher by about 0.2 for the III classes.

The analysis of “matchstick” charts (Figure 5) al-
lowed us to visually assign the trees into crown classes in 
all three plots. It indicated, similarly to the probabilities 
of belonging to Kraft’s classes, that for the first two plots 
the KPCA Laplace and Chi-squared, as well as the PCA 
analysis only for the second plot, were visually consistent 
with the original crown class assessment. In the third plot, 
the closest results gave the KPCA Laplace and Gauss. The 
proportions of trees were consistent with the probabilities 
of belonging to crown classes for these kernel functions 
(Fig. 4).

Discussion
Our study presents a statistical use of measurable 

traits of trunk and crown to assess the crown classes of oak 
trees. It is worth mentioning that so far, a few studies have 
used similar statistical methods, e.g. Bechtold 2003, Zaw-
ieja and Kaźmierczak 2015, 2016. Such an attempt derives 
from practical difficulties in biosocial class assessment. 
They concern especially the subjectivity of the estimation 
procedure (Nigh and Love 2004). As it was mentioned in 
the introduction, assigning trees into a given class requires 
a lot of experience, and its accuracy depends on human 
judgments rather than on strict values. The above statement 

confirmed Kangas et al. (2004) during the research on the 
accuracy of visually assessed stand characteristics. A case 
study indicates a clear variation among technicians, espe-
cially in traits that include personal judgment. Furthermore, 
results showed that broadleaved classes were generally 
more difficult to estimate than coniferous. The accuracy of 
the field-assigned crown class depends also on its applica-
tion. Although Kraft’s classification was meant primarily 
only for even-aged stands, it is more often applied to un-
even-aged stands. Thus, the research on the repeatability 
of crown position assessment in the Appalachian spruce-fir 
forest indicates that crown position is difficult to similarly 
reclassify on the second visit in uneven-aged stands (Nich-
olas et al. 1991). That is why many attempts have been 
done to suggest an alternative, a modified Kraft’s classi-
fication.

Bechtold (2003) replaced a traditional crown class as-
sessment with two alternative more repeatable traits – crown 
position and crown light exposure. An algorithm applied to 
the alternate variables estimated crown class with the same 
degree of accuracy as a field-assigned method. Moreover, 
the author pointed out that such traits supply more specific 
data about each tree than the crown class alone. Therefore, 
such an approach is potentially useful for modeling and oth-
er research studies. In our study, results indicated that the 
multivariate analysis, based on the directly measured traits, 
estimated crown classes of trees almost with the same re-
sults as a field-assigned method. All traits contributed to the 
crown class distinction. Thus, it indicates, similarly to the 
study conducted by Bechtold (2003), that such traits can 
be a potentially useful substitute for the traditional crown 
class assessment. Similar tree variables, i.e. DBH, H, rela-
tive DBH, H, CL, and crown depth together with the light 
model tRAYci were used by Nigh and Love (2004) to predict 
crown classes. The accuracy rates achieved 91% and 82% 
for the field-based and light-based assessments of crown 
classes, respectively. An additional useful statistical tool is 
the discriminant analysis that found application, i.e. to dis-
tinguish floristically different forest types (Thessler et al. 
2008) and to assess the status of fire risk points (Jing et al. 
2015). Such analysis was also used to allocate Scots pine 
trees into crown classes (Zawieja and Kaźmierczak 2015). 
The analysis indicated that four traits. i.e. height increment, 
DBH, slenderness, and tree basal area can be useful to divide 
trees into Kraft’s classes. Also, the discriminant NKDA and 
LDA analyses were used to allocate trees into the biosocial 
classes. The three traits, i.e. DBH, H, and CPA, were selected 
for the model. The analysis showed a quite clear division 
(Kaźmierczak and Zawieja 2016, Zawieja and Kaźmierczak 
2016). However, the discriminatory methods forced prior 
knowledge of the field-assigned crown class. Thus, in the 
present study, we applied the PCA and KPCA methods. It 
allowed us to assign the trees into the crown classes both 
in plots with and without a priori known biosocial posi-
tion. In the first two plots, both PCs explained well the total 
variability by almost all used kernel functions. Moreover, 



164

BALTIC FORESTRY 27(1) THE USE OF MEASURABLE TRAITS OF TRUNK AND CROWN TO ASSESS /.../ ZAWIEJA, B. ET AL. 

we showed that for the KPCA Laplace and Chi-squared the 
probabilities of belonging to Kraft’s classes were nearby to a 
priori probabilities. In other words, they were most consis-
tent with the original field-assigned method. It was also con-
firmed by visual crown class distinction. The analysis of the 
“matchstick” chart (Figure 5) allowed us to visually assign 
the trees into Kraft’s classes. The closest results, similarly, to 
empirical probabilities of trees belonging to Kraft’s classes, 
were given by the KPCA Laplace and Gauss. It indicates that 
these kernel functions can be a potentially most useful statis-
tical substitute for the crown class estimation.

The analysis showed that the greatest contribution to 
PC1, and thus the greatest contribution to the crown class 
distinction, had the DBH and crown parameters CL and 
CPA. A supplementary trait, with the greatest contribution to 
PC2, was the variable of H and CPA. Thus, it correlates with 
recent studies conducted by Bechtold (2003), Nigh and Love 
(2004), and Kaźmierczak and Zawieja (2016) that indicated 
a great role of alternative measurable traits in crown class 
assessment. The contribution of the listed traits to Kraft’s 
class assessment derives from their joined interactions. As 
Turski et al. (2012) and Kaźmierczak (2017) stated, the 
crown length decreases along with the decrease of the bioso-
cial position of the tree. Thus, the crown parameters CL and 
CPA are indicators of the ‘growth energy’. Consequently, the 
crown plays a huge role in the life of the tree (Monserud 
1975, Monserud and Sterba 1996). The size of the crown af-
fects the annual ring increment, and thus affects the DBH and 
H traits (Daniels and Burkhart 1975, Jaworski et al. 1995). It 
indicates why such traits allowed us, though not perfect, to 
distinct separate crown classes.

Although the analysed traits allowed us to assign the 
trees into crown classes, the same variables were not always 
decisive in the division within all the plots. Moreover, the 
separation was not always clear. It was difficult to separate 
some crown classes using different kernel functions. The 
solution could be the creation of the neuron network. How-
ever, even if it was based on a higher number of trees and 
plots, it might still work incorrectly. The explanation lays 
in the lack of information about the direct position of trees 
in relation to their neighborhood, which is considered in the 
traditional field-assigned method. Perhaps supplementing 
the multivariate analysis with such a variable would allow 
gaining more precise and objective separation into crown 
classes. Moreover, a traditional crown class assessment is 
a more effective and faster way to determine the biosocial 
position of trees. In contrast to statistical analysis, it allows 
grouping trees in similar ‘growth energy’ groups, which is 
more appropriate, e.g. during thinning determination. Con-
sidering this limitation, we state that a traditional crown class 
assessment, despite its subjectivity, should continue to be of 
great importance in forestry practice. We also suggest that al-
ternative traits of trunk and crown can be a potentially useful 
statistical substitute for crown class assessment. However, 
its application requires measurements that make it neither 
cheaper nor faster than a traditional field-assigned method.

Conclusion
In our study, we showed that chosen alternative traits 

of trunk and crown allowed, though not always perfect, 
to assign the trees into given crown classes. The greatest 
contribution to crown class distinction had the diameter at 
breast height and the parameters of crown, i.e. the length of 
the crown and the field crown projection area. Furthermore, 
results show that the best method of assigning the trees 
into biosocial classes is the KPCA Gauss (considering the 
percentage explanation of the total variability) and KPCA 
Laplace (considering the visual division). In the latter, the 
multivariate analysis resulted in a similar crown class dis-
tinction as the field-assigned method. However, its appli-
cation requires measurements that make it neither cheaper 
nor faster than a traditional crown class assessment. It in-
dicates that a traditional field-assigned method, despite its 
subjectivity, should continue to be of great importance in 
forestry practice. The alternative traits of trunk and crown 
used in the multivariate analysis can be a potentially useful 
statistical substitute for crown class assessment.
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