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Abstract

Countrywide up-to-date tree cover maps provide valuable information for planning and management purposes to
investigate location of the resources and to identify afforestation and deforestation patterns. Landsat programme offers
freely available satellite data with time span more than three decades and it can serve as bases for tree cover map calculation
using satellite image classification; however, practical use of classification methods is limited due to lack of user-friendly
solutions and complex interpretation of the results. The objective of this study is to evaluate user-friendly hybrid classifi-
cation scheme for tree cover mapping in Latvia and to explore the nature of the spectral classes and consistency of the
results when methodology is applied to images of different dates. Tree cover in this context means the area covered by
crown of the tree, which may or may not be considered as forest according to local provisions. Tree cover is estimated using
unsupervised fuzzy c-means methods with the stability check to ensure the presence of the same spectral classes in
independent tests. Spectral classes are classified into two categories: tree cover and other by employing k-nearest neigh-
bours. Such approach does not require high quality sample data and does not include user defined internal parameters of the
algorithms (however, they can be specified if needed). The best overall accuracy achieved for year 2014 was 94.2% with
producer’s accuracy 98.7% (tree cover), 90.5% (other land cover), user’s accuracy 90.0% (tree cover), 98.8% (other land
cover) and kappa 0.89. Consistency studies showed high impact (within 10% of overall accuracy) of unique conditions
during the image acquisition. Some of the spectral classes represent borderline case between relatively dense tree cover and
other land cover types like sparse young stands. Those cases are the main threat to the consistency between the results of

different dates and seasons.

Keywords: Landsat and Sentinel satellite images, tree cover, fuzzy c-means, k-nearest neighbours, spectral classes,

consistency of the results

Introduction

Forest is one of the most important natural re-
sources to ensure economic needs, well-being of citi-
zens and stability of the climate. Countrywide up-to-date
tree cover maps provide valuable information for plan-
ning and management purposes to investigate location
of the resources and to identify afforestation and defor-
estation patterns (Franklin 2001). Tree cover in this con-
text means the area covered by crown of the tree, which
may or may not be considered as forest according to
local provisions. Landsat program offers free of charge
satellite images for more than three decades ensuring
the most detailed spatial and temporal coverage of land
cover observations. Sentinel-2 Earth observation mis-
sion by European Space Agency is another free of charge
multispectral data provider. Digital format promotes com-
puter processing of those images and preparation of the-
matic maps for different environmental control purposes

(Hansen and Loveland 2012). Meanwhile, despite the
long years of the studies of medium spatial resolution
satellite data classification, a practical use of satellite
images in many fields delays mostly due to user un-
friendly solutions (Hansen and Loveland 2012) and com-
plex interpretation of the classification results and accu-
racy assessment (De Leeuw et al. 2010, Nagendra et al.
2013).

Motivation for this study is based on the afforesta-
tion problem in the agriculture lands in Latvia. Checking
of the databases of record keeping organizations for
agriculture land registry showed differences in the total
area of agriculture lands within 25% (Pilvere 2012). Total
amount of abandoned agricultural lands was identified
as 147.6 thousand hectares from which 6.2 thousand
hectares were found as afforested (Pilvere 2012).

Remote sensing tools have a potential to provide
accurate tree cover maps for specific date enabling to
investigate current forest coverage and to identify
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changes in the forest areas like deforestation, forest deg-
radation, forest fragmentation, forest afforestation and
forest regeneration (Sloan and Sayer 2015). Comparison
between existent forest area databases and remote sens-
ing-based tree cover maps could allow efficient identifi-
cation of non-registered forest areas.

Emphasis in this study is put on tree cover classifi-
cation instead of term “forest classification”.

Forest definition usually is stated in the local provi-
sions. According to the Law on Forests in Latvia “for-
est” is an ecosystem in all its stages of the develop-
ment, where the main producers of the organic matter
are trees. Minimum height of the trees has to be at least
5 meters and the present or potential tree crown projec-
tion on the ground has to be at least 20% of the whole
arca of the forest stand. (Law of Forests 2000)

Afforested agricultural lands often do not contain
tree stands (for example, several trees growing in bushes
or trees being smaller than 5 meters) according to this
definition, so, instead of mapping forest according to
the definition, tree cover mapping is more crucial. Al-
though the computer methods are the same for both
tasks, differences occur in preparing sample and test
data sets.

Many Landsat imagery studies include forest area
identification in the general land use or cover classifica-
tion scheme besides agricultural lands, urban areas, water
and other classes present in current geographical area
(Wilkinson 2005).

Statistical machine learning methods like k-Nearest
Neighbours (kNN) (Haapanen et al. 2004), maximum like-
lihood (Schulz et al. 2010, Srivastava et al. 2012), sup-
port vector machine (SVM) (Pal and Mather 2005,
Mountrakis et al. 2011) and artificial neural networks
(ANN) (Civco 1993, Kavzoglu and Mather 2003) are em-
ployed for classification of the pixels in the land cover
classes.

Review article of Holmgren and Thuresson (1998)
summarized classification accuracy from different stud-
ies of forest classes starting from young stand and end-
ing with mature stands. They concluded that typical
overall accuracy is in the range from 65% - 85%, but
inclusion of other land cover types helped to improve
overall accuracy above 90%. Study of Srivastava et al.
(2012) compared maximum likelihood classifier, SVM and
artificial neural networks and authors concluded that
application of ANN results in only 2% accuracy
increment.

Some studies have tested unsupervised classifica-
tion to reduce the importance of user selected sample
data (Mather 2004, Fan et al. 2009).

Other type of methods for tree cover identification
is based on spectral indices and image thresholding. Ye
et al. (2014) proposed special spectral index FI (Forest

Index) for separating the forested areas by simple
thresholding. They reported overall accuracy for two
test sites in the USA and Canada (broad leaf forest, nee-
dle leaf) 96.2% (kappa 0.911) and 97.8% (kappa 0.954)
using 500 random test points labelled through visual
interpretation.

There also have been wide scale studies of forest
cover mapping. Potapov et.al (2015) studied forest cover
dynamics (annual forest cover loss and decadal forest
cover gain) from 1985 to 2012 in Eastern Europe includ-
ing Latvia, while researchers of University of Maryland
prepared world-wide estimates of tree cover (Hansen et
al. 2013).

Review article of Wilkinson (Wilkinson 2005) sum-
marizes more than 500 land cover and land use classifi-
cation experiments using remote sensing data during 15
years starting from 1990. It was concluded that during
15 years classification accuracy has not significantly
improved and average values for overall accuracy are
76.2% with standard deviation 15.59% and for kappa 0.656
with standard deviation 0.198. Typically, land cover clas-
sification scheme includes 8 land cover classes in aver-
age with standard deviation 4.6 and employs 7.85 fea-
tures with standard deviation 11.54. It was concluded
that spatial resolution does not impact classification
accuracy significantly since the high spatial resolution
sensors usually possess low spectral resolution (Wil-
kinson 2005).

Our interests were more related to convenient map-
ping of tree cover for local scales to promote use of
remote sensing in daily work of record keeping and con-
trolling institutions. Therefore, emphasis in requirements
for the methods was set on convenient use of the algo-
rithms without a lot of internal parameters and strong
requirements for sample data quality.

Hybrid classification approaches aims to combine
the advantages of supervised and unsupervised classi-
fication. Unsupervised classification typically is em-
ployed for optimized preparation of input data for su-
pervised classification: training data clustering, training
data selection from spectrally homogeneous arcas and
image stratification before supervised methods (Kuem-
merle et al. 2006). The main reason for the use of unsu-
pervised methods only in the training data preparation
phase is a time demand of clustering algorithms (Richards
and Jia 2006).

Results of the unsupervised methods depend on
the initialization of cluster parameters and challenge is a
relationship between spectral classes and land cover
classes expected. Robustness of clustering in studies
has been achieved by methods based on combining the
results of different algorithms and different parameter
initializations (Banerjee et al. 2015). Fan et al. (2009) pro-
posed single point iterative weighted fuzzy c-means clus-
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tering algorithm which incorporates weighting of data
attributes to adjust clustering results to a specific appli-
cation. Yu et.al (2008) evaluated inclusion of different
metrics in FCM and concluded that for remote sensing
images ability to discriminate clusters of different shape
and size improves for approximately 5%.

The objective of this study is to evaluate user-
friendly hybrid classification workflow for tree cover
mapping in Latvia and to find answers to the following
research questions by the means of case studies:

RQ1: how is stability of unsupervised classification
affected by random initialization and number of spectral
classes?

RQ2: how are the results of the unsupervised clas-
sification affected by unique conditions (like atmosphere,
illumination, and season) during the image acquisition?

RQ3: what are the relations between forest spectral
classes and forest inventory parameters?

We evaluated a very simple approach: an image is
classified using unsupervised fuzzy c-means (FCM) to
find the natural spectral groupings of pixels (spectral
classes) and spectral classes are labelled and merged in
two land cover classes (tree cover, other) using super-
vised k-nearest neighbours. Unsupervised approach was
chosen to explore the actual image content avoiding
pressing classification by sample data, which could be
subjective and inaccurate. Fuzzy classification was cho-
sen to enable subpixel mapping; however, subpixel map-
ping has been considered as a complex method due to
spectral interactions between neighbouring pixel and
non-linear combinations of reflectance signatures (Town-
shend et. al. 2000). Several case studies were performed
to find the relations between spectral classes and sam-
ple data to draw conclusions about what exactly is “seen”
in the image by statistical machine learning algorithms.

M aterial and methods

Study area

The study area includes four administrative regions
in the central part of Latvia: Salaspils, Ropazu, Stopinu
and Ikskiles regions, located between 24.19° E and 25.11°
E, 56.6° N and 57.1° N. Total area of these regions is
864.7 km? of which approximately 42% are covered by
forests, but 33% consists of farmlands according to the
ancillary data available for this study. The study area
covers 350.2 km? of forest owned by the State of Latvia.
Dominant tree species in the study area are Scots pine
(Pinus sylvestris L., dominant in 61% of total area of
State forests), Norway spruce (Picea abies L., dominant
in 13%), birch (Betula pendula Roth, dominant in 13%)
according to the Regular Forest Inventory data. Agri-
cultural lands typically are afforested with Norway spruce
and birch. Mostly all tree species are present in the mixed

stands. The landscape is a mosaic of agricultural lands,
forests, swamps, urban and water areas.

Remote sensing data

Landsat 8 OLI, Landsat 7 ETM+, Landsat 5 TM and
Sentinel-2A images were downloaded for the tree cover
identification tasks. Table 1 shows the list of the images
employed in this study and the main characteristics of the
image acquisition. Images were reprojected to national
map projection LKS-1992 Latvia TM (EPSG code: 3059)
and geometric accuracy was assessed by visual inspec-
tion using uniformly distributed road crossings selected
in orthophotomaps. Orthorectification by using second
order polynomial transformation, nearest neighbour
resampling and 50 ground control points precisely located
in orthophotomaps were performed if maximal geometri-
cal shift was larger than two satellite image pixels. No
additional pre-processing operations were performed to
keep the methodology as simple as possible.

RGB orthophotomaps were acquired from Latvian
Geospatial Information Agency to enable visual assess-
ment of the study site. Aerial photos forming ortho-
photomaps were in 0.4 m spatial resolution and image
acquisition was organized in June of 2013.

Table 1. Landsat and Sentinel-2A satellite images employed
in the study and meta data information

Acquisition Solar Cloud
Landsat scene ID date elevation cover
(dd.mm.yyyy) () (%)
LC81870202014023LGNO0 23.01.14. 12.2 587
LC81870202014055LGNOO 24.02.14. 22.0 17.83
LC81870202014087LGNOO 28.03.14 3455 0.01
LC81870202014135LGNOO 15.05.14. 50.5 1.26
LC81870202014215LGNOO 03.08.14. 48.7 017
LC81870202014247LGNOO 04.09.14. 38.9 0.7
LC81870202014263LGN00 20.09.14. 33.1 537
LC81870202015074LGNOO 15.03.15. 29.2 14.38
LC81870202015186LGNOO 05.07.15. 53.8 36.4
LE71870202002238KI1S00 26.08.02. 41.2 0
LT51870202000241FUI00 28.08.00. 39.8 0
LE71870202000137EDCO00 16.05.00. 50.3 0
LT51870201988288KIS00 14.10.88. 22.8 9
LT51870201987285XXX03 12.10.87. 23.7 0
S20150824T094301 (part 24.08.15. 43.3 0
of the full ID)
S20170316T094021 (part 16.03.17. 30.7 0
of the full ID)
Field data

The field measurements were carried out for natu-
rally afforested former agriculture lands. Clusters of sam-
ple plots in the test area were established subjectively
based on visual comparison of orthophoto images 1994-
1999 with images of 2013.

We established 4 sample plots within each cluster.
Centres of sample plots were placed by visual assess-
ment in way to characterise particular conditions in over-
grown area and plots were chosen to be as homogene-
ous as possible with respect to the forest inventory vari-
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ables. We took at least 100 GPS readings to get coordi-
nates (LKS-1992 Latvia TM) of sample plot centre. For
each sample plot we gave description of forest type.

Tree layer was described in concentric circular sam-
ple plots, where trees were measured depending on
breast height diameter (DBH): more than 14.0 cm in 500
m?, 6.1-14.0 cm in 100 m?, and 2.1-6.0 cm DBH in 25 m?
sample plots. Stems of smaller trees and bushes were
counted in 60 m? large sample plot. For trees with DBH
more than 2.1 cm, height was measured for 3 trees for
each species in the sample plot.

Totally, trees were measured in 280 sample plots: 70
clusters in different locations with 4 sample plots for
each cluster. Field measurements showed that former
agricultural lands are afforested by birch and spruce.

Ancillary data

Since field measurements were performed only for the
naturally afforested agriculture lands (only young stands),
the regular forest inventory (RFI) data base from State For-
est Service was employed as additional data source to un-
derstand satellite image classification results in more de-
tails with respect to the forest inventory variables. The RFI
contains measurements and estimates of forest inventory
variables at forest stand level. Average stand arca is 1.7 ha
and statistics of some forest inventory parameters are sum-
marized in Table 2. Latest updates for our RFI data base
version were recorded on 2014.

Tree cover maps derived from orthophotomap pro-
cessing using decision tree-based method were employed
as well to examine impacts of tree cover to satellite data
classification. Accuracy of these maps was evaluated
during the same research project this study was performed
using the same test point set. Accuracy variables for tree
cover/other case were the following: overall accuracy
90.9%, kappa coefficient 0.81, user’s accuracy 93.0%/88.1%
and producer’s accuracy 87.2% for stands in the RFI da-
tabase, 98.2% for afforested lands (according to field meas-
urements) and 90.4% for other class.

Table 2. Statistics of forest inventory data
and sample plots

Statistics of the RF| data base

Forestinventory Average Maximum  Standard

parameter value deviation

Age (years) 61 217 46

Height (m) 16.2 36 10.5

Diameter at breast 18.5 68 12.8

height (cm)

Volume 188.5 752 134.5
Statistics of the field plot data

Age (years) 12.8 19 3.5

Height (m) 9.4 19.3 4.1

Diameter at breast 10.2 26.6 4.5

height (cm)

Volume 58.6 241.6 51.6

Methods
Workflow of the tree cover classification using FCM

is shown in Figure 1. For some of the case studies kNN
method alone was employed.
- Useful area selection

Input data:
- Medium spatial resolution
eatelllic i - Orthorectification

- Road map or orthophotos v

1. Preprocessing
- Map projection conversion

2. Unsupervised fuzzy c-means
- Stability check

Input data: v
- Forest inventory data base 3. Preparation of sample and test data
- Orthophotos
~ L]
4. Supervised kNN
Output: - Accuracy assessment, confidence
v Tree cover map level assessment
¥  Accuracy assessment

Figure 1. Workflow for tree cover identification

Forest area identification using hybrid fuzzy
c-means

Since the statistical machine learning algorithms
usually are computationally intense (Duda 2000), it is
logical to remove easily identifiable objects from the im-
age. Such objects are clouds (CC), cloud shadows (CS),
water areas (W) and “no data” (ND) pixels. Useful area
(UA) mask marks only those pixels which are valid can-
didates for tree cover/other classification:

UA=1-(CCOR CSOR W OR ND). @)

Useful area mask was calculated using the solution
Fmask described in (Zhu et. al. 2015). Output of this step
is a binary mask showing useful areas for classification.

Unsupervised approach classifies the image pixels
by aggregating them into the natural spectral groupings
or clusters (spectral classes). Choice of the hard classi-
fication method can be reasonable only if large, homo-
geneous land cover areas are present in the image. If the
landscape is highly fragmented and transition land cover
classes are present in the area, then application of the
soft classification is more logical. FCM is a method of
clustering which allows one pixel to belong to more than
one cluster (spectral classes). “Membership grades
range in value from O to 1 and provide a measure of the
degree to which the pixel belongs to or resembles the
specified class, just as the fractions of proportions used
in linear mixture modelling” (Mather 2005, p. 234.).

Basic FCM algorithm is the following (Ghosh et al.
2011, Park 2012):

1. Randomly initialize the membership matrix U (size
n % ¢, where n is the number of pixels in the image to be
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processed, ¢ is the number of spectral classes specified
by the user) following to the constraints:

c

Zuij=1'f0TVf=1:---'" @

i=1

2. Calculate centroids V (size ¢ x f) using:
n n
v = Z(uij)mxj/ Z(ui;‘)m ©)
i1 -1

where m is the fuzzyfication level, m = /.2 in our stud-
ies; x,is the i pixel vector of size 1 x f X, =[x, X s xl.f];
fis the number of satellite image bands.

3. Update membership matrix U values according to
equation:

dij 2/(m-1)
o= — 4
wyj = 1/2 (dw) @

dl_jis the Euclidean distance in feature space from pixel x,
to pixel X, see formula 7;

4. Compute dissimilarity between iterations:

A=|U-U,| ©)
where t is the number of the iteration.

5. If A<e, where ¢is the positive constant, then stop?,
othewise go to step 2.

The FCM result is represented by a membership
matrix.

FCM is applied only to image pixels, which are
marked by the useful area mask. This FCM implementa-
tion employs random initialization of the membership
matrix U. Random initialization can result in different
centroids for the same image if we test the same image
several times. Because of this reason, FCM is supple-
mented with the following stability check:

1. FCM is repeated for the same data set 5 times.
Centroids are recorded for each of the five tests.

2. Centroids are renumbered using the Euclidean
distance. Centroid placement in the first test is used as a
reference placement. Then for the next tests Euclidean
distances are calculated form the current centroid in the
current test to every centroid in the reference placement.
Current centroid is placed where the minimum Euclidean
distance was found with some reference centroid.

3. Average standard deviation of the centroid val-
ues was calculated for five tests. First, the standard de-
viation was calculated for each image band for the tests,
then the average value for each centroid (along image
bands) was found and finally the average value for the
all centroids was calculated.

4. If Ocenroias >0.01, then number of spectral classes
is reduced by one and the whole procedure is repeated
again until the stable solution is found.

Output of this step is an image of the spectral
classes.

Spectral classes have to be labelled in two land
cover classes (tree cover/other) by using sample data
and the supervised k-nearest neighbours’ algorithm.

“In a supervised classification, the image analyst
“supervises” the pixel categorization process by speci-
fying, to the computer algorithm, numerical descriptors
of the various land cover types present in a scene”
(Lillesand 2004, pp. 551). kNN assumes that similar land
cover types exist within a large reference area covered
by a satellite image and that the spectral radiometric re-
sponses of the pixels are only dependent on the state of
the land cover (Franco-Lopez et al. 2001)

The basic kNN algorithm is the following:

1. Prepare sample data by providing sample pixel
vectors and corresponding land cover classes accord-
ing to the reference data or visual assessment:

S=[(x,, ®),(x,, 0, ..., (X, mnj)]T ©)
where xjis the j* pixel vector of size I x f; a)jis the land
cover class for pixeli,j=1, 2, ..., Z, Zis the number of
land cover classes; T is the transposition operation.

2. Calculate the Euclidean distance in feature space
from pixel to be classified x. to all sample pixels x; from S:

)

3. Select £ most similar sample pixels (nearest neigh-
bours) with the smallest distance d.

4. Land cover class can be estimated as mode of &
nearest neighbour’s land use classes.

Fifty-one pixels (or all pixels if the spectral class
contains less than 51 pixels) are randomly selected from
each spectral class and classified using the sample data.
Spectral class is assigned to land cover class to which
the majority of 51 random pixels belong. Spectral classes
are united in two thematic maps (tree cover, other) by
using image addition of the spectral class images with
the same land cover class recognized. The number of
pixels assigned to tree cover and other ones are called
confidence level in this study (should not be confused
with statistics). If the majority of pixels is assigned to
one land cover class, then KNN confidence level is called
high. If approximately half of the pixels are assigned to
one land cover type, but other pixels to other land cover
type, then kNN confidence level is called low.

For some of the case studies kNN was applied inde-
pendently on pixel basis.

Output of this step is tree cover and other land cover
images.

Preparation of the sample and test data

The sample data set was prepared using the RFI
database while test data set was prepared only by visual
assessment. The sample data set should include com-
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prehensive variations in forest inventory variables, there-
fore RFI data are useful. All updated and valid RFI data-
base records were employed for the sample set, there-
fore the test data set were prepared independently. The
sample data set for KNN supervision included 1292 sam-
ple points:

 Class: tree cover. Totally, 711 points were selected
from the RFI database. Points were centroids of forest
stand polygons, where standing volume was greater than
0 m’/ha, area of the stand larger than 5 hectares and the
stand was inventoried not earlier than 2012.

 Class: other. Totally 581 points. Regular point grid
was generated with spacing of 1 km between points. All
points overlapping with the RFI database were removed
automatically, but the rest of the points were checked
visually using orthophotomaps and Google Satellite
Open Layer in QGIS for 2014. Points of other land cover
type but closer than 60 m to the forest were moved.

Raster values for each image were selected for each
point. No additional processing of sample data was per-
formed to keep the methodology simple.

The test data set was prepared only for Ropazi re-
gion and included 1000 randomly placed points. The ran-
dom point placement was chosen to ensure more objec-
tive accuracy assessment by picking test points with-
out any preceding considerations which might affect
accuracy variables. The test points were labelled with
the land cover type labels by using visual assessment
of orthophotomaps and Google Satellite Open Layer in
QGIS for 2014. Random pixels closer to the border of
other land cover type were moved at least 60 m far from
the border. Test data set included 465 tree cover points
and 535 points of other land cover type. Additional 280
afforested agricultural land points were evaluated to
assess the tree cover product application for afforested
land identification.

Accuracy assessment

Variables derived from the confusion matrix were em-
ployed for the accuracy assessment as follows: overall
accuracy (OA), producer’s accuracy (PA), user’s accu-
racy (UA) and kappa (Foody 2002).

Description of the case studies

Research question RQ1: how is FCM stability af-
fected by random initialization and the number of spec-
tral classes c?

Resultant spectral classes are dependent on two pa-
rameters: 1) the number of spectral classes ¢ usually
specified by the user, 2) initialization of the membership
matrix.

A case study was performed for image No.
LC81870202014215LGNOO. This image was chosen since
it was the only cloud free image for summer season (with

predictable vegetation condition happening on the
ground) in the year consistent with RFI data. Since this
case study is related to the behaviour of the FCM method,
similar results could be obtained for other images and
test image results are provided to illustrate hopping of
the centroids depending on the number of spectral
classes.

If the user specifies wrong number of the spectral
classes or some specific case happens in initialization
step, then FCM results can be unstable. Meaning, that
centroids returned might be different if FCM has been
applied to the same data set several times with the same
user defined parameters. Therefore, FCM was repeat-
edly applied for the experiment purposes to the same
data. For each number of spectral classes from 2 to 15
FCM was repeated five times to check similarity of
centroids among those five tests. Centroid values for
each experiment were saved and renumbered since the
order of the spectral classes can change. After the re-
numbering we obtained a matrix with size C x F' x N for
each number of classes ¢, where F' is the number of bands
and N is the number of experiments (V=5 in our study).
Centroid hopping is measured by centroid standard de-
viation for each number of spectral classes. Low stand-
ard deviation shows that centroids are approximately
the same in each experiment, but high standard devia-
tions shows that FCM with that number of spectral
classes is unstable and results should be analysed more
carefully.

Research question RQ2: how are the results of the
hybrid classification affected by unique conditions (at-
mosphere, illumination and season) during the image
acquisition?

All Landsat and Sentinel images listed in the sec-
tion “Remote sensing data” were employed.

Sample data were selected from each image using
the same points described in the section “Preparation of
the sample data and test data”. kNN independently was
applied to the Sentinel 2A images to check consistency
of the supervised classification. The hybrid classifica-
tion scheme was run for each image together with stabil-
ity check starting with ¢=8 and standard deviation al-
lowed was 0.01. These constants were found by experi-
ment and trial method as a solution, which provides re-
sults with overall accuracy higher than 80% for each
test image in our study. kNN statistics were acquired for
the random samples from each spectral class to estimate
the confidence level how each spectral class was classi-
fied. The coincidence level is expressed as a number of
pixels from the spectral class classified as tree cover
(TC) and other (O). If almost all pixels are assigned to
just one land cover type, then confidence level is high.
Otherwise the confidence level is low.
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Research question RQ3: what are the relations be-
tween forest spectral classes and forest inventory pa-
rameters?

The case study was performed using satellite im-
ages of year 2014.

FCM responses for the spectral classes were se-
lected for each centroid of forest stand polygon from
the RFI data base. For each spectral class those forest
stands were chosen, where this spectral class contained
FCM value higher than 0.5. Statistics of forest inventory
parameters (standing volume, age and tree species) were
calculated for each spectral class to investigate relations
between spectral classes and forest inventory param-
eters. Since the RFI data base can contain data errors,
only averaged values were analysed.

We compared image LC81870202014023LGNOO (the
highest overall accuracy in this study) with TC maps
derived from orthophotomaps to find relationships be-
tween satellite image classification results and tree cover.
For each spectral class found in Landsat image percent-
age of TC was calculated.

Results

Results of the case studies

Research question RQ1: how is FCM stability af-
fected by random initialization and number of spectral
classes c?

Table 3 shows the averaged standard deviation of
the centroid values in five experiments for each number
of spectral classes. Low standard deviation indicates
that centroid values almost do not change in the inde-
pendent experiments and stability is achieved, but high
standard deviations mean significant changes in the
centroid values and unstable FCM result. We can ob-
serve that FCM provides stable solutions in some cases.
This stability can be observed in the case when number
of spectral classes ¢ coincides with the actual number of
the spectral classes in the image (the actual number rep-
resents actual image content and it is not known by the
user). For example, if there are 4 spectral classes present
in the image and we run FCM with ¢=35, then one class
will be separated artificially and since it would not be
related to the actual spectral class, the splitting can be
different in the different tests. According to the results
for a specific Landsat image, ¢=2, ¢=4, ¢=6, ¢c=7 and
¢=8 can achieve the stable solution (indicated by low

zation. ¢ values higher than 8 result in unstable separa-
tion of the spectral classes. So for further studies c=8
was set as an initial number of spectral classes. This
number can be corrected by stability check.

Research question RQ2: how are the results of the
hybrid classification affected by unique conditions (at-
mosphere, illumination, and season) during the image
acquisition?

In case, when kNN was applied independently on
pixel basis without FCM based grouping of pixels, then
OA and kappa were 94.7%/0.89 for Sentinel-2A image
acquired in March and 96.1%/0.92 for the image acquired
in August. Classification results differ in 0.12 km? per
each square kilometre in average. Differences in this
context means, that different land cover types were as-
signed for the same area in images of March and Au-
gust. After the filtering of potentially noisy differences
due to geometrical shifts with the median spatial filter of
size 3 by 3, only 0.09 km?per each square kilometre in
average differed. Visual inspection of the remaining ar-
eas resulted in conclusion that classification results dif-
fer due to: 1) the actual changes in tree coverage (like
clear cutting), 2) the borders of the stands what could
be explained by both geometrical shifts and changes in
the solar elevation and azimuth, and 3) the land cover
classes with high spectral variation because of the sea-
son, like bogs and marshes. For practical use, bogs and
marshes could be masked out by using temporal fea-
tures.

Next, we will consider the results for FCM based
workflow. Table 4 shows experiment results as a kKNN
statistics. There are spectral classes, which are classi-
fied with a very high confidence level meaning that al-
most all random pixels of the spectral class are assigned
to the same land cover class, but some spectral classes
represent some kind of transition classes between those
two desired land cover types. For example, low tree den-
sity forest stands and shrubs can form the transition
classes. Since the spectral classes represent the actual
image information, this experiment shows how critical is
the selection of sample data in the supervised classifi-
cation. In non-homogencous areas such transition
classes are very common and it requires extra knowl-
edge how to handle those pixels.

There are one or two transition spectral classes on
average for each image and kNN confidence level which
do not show clear trends according to the season or

standard deviation) with the presence of random initiali- image acquisition date. Exception is image
Table 3. Stability of the centroids in five experiments for each number of spectral classes ¢
¢ 2 3 4 5 6 8 9 10 11 12 13 14 15
Oceniroids  0.00 203.5 0.004 1357 0.1 04 0.01 199.0 164.2 725 1314 160.1 108.6 68.0
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LT51870202000241FUI00 that shows four transition
classes, but the reason for this could be intensive cloud
cover and lack of the number of useful pixels.

Differences among classification results of differ-
ent dates are very small for the high confidence level
classes, but are quite significant for the transitional
classes. Visual assessment of satellite images showed
that the transitional classes are affected by image acqui-
sition season due to changing response for green vege-
tation.

like atmosphere and illumination conditions and would
require more reference data on atmosphere conditions
to analyse it in details. However, it could be expected to
have higher accuracy for non-green vegetation seasons,
because the spectral separability between deciduous
trees and grasslands is better in winter and early spring.
Partial snow cover should not make the analysis of spec-
tral classes more complex, because the spectral response
of snow is quite distinctive comparing with the tree cover.
Decrease in accuracy for years 2002, 2000, 1988 and 1987

Table 4. Superv1sed classification Image No. Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class 8
statistics for the s'Fable solution of LC81870202014023LGNO0 200 110 10 210 00 460 510 51
FCM. 51 random pixels were select- 22TC 40TC 50TC 30TC 51TC 5TC O0TC 0
: LC81870202014055LGNO0 70 460 280 510 00 430 90 00
§d for each cl.as.s and classified us 4TC 5T 23TC oTe s TC 8TC  a27C 51 TC
ing kNN. Statistics show how many LC81870202014087LGNO0 510 210 470 00 30 90 - -
: : 0TC 30TC 4TC 51TC 48TC 42TC
plxel.s m each spectral class were LC81870202014135LGN00 180 1 0 490 50 170 420
classified as tree cover (TC) and 33TC 50TC 2TC 46TC 34TC 9TC -
LC81870202014215LGNO0 510 150 00 500 60 460 240
other (non-forest) (O) land cover oTC 3TC 51TC 1TC 45TC 5TC 27TC
type. The kNN statistics for class- LC81870202014247LGNO0 240 420 490 30 100 480 00
: 27TC 9TC 2TC 48TC 41TC 3TC 51TC -
es with low confidence level are col LCB1870202014263LGNO0 480 80 10 20 60 280 510 360
oured bold. If most of the 51 pixels 3TC 43TC 50TC 49TC 45TC 23TC O0TC 15TC
: : LC81870202015074LGNO0 00 0O 320 60 400 30 510 -
are assigned Ju,St to one lanfi cover 51TC 51TC 19TC 45TC 11TC 48TC O0TC -
type, then confidence level is high LC81870202015186LGNO0 470 210 420 00 30 10 450 140
4TC 30TC 9TC 51TC 48TC 50TC 67TC 37 TC
LE71870202002238KIS0O0 40 510 30 510 00 10 30 49 0
47TC 0TC 17TC O0TC 51TC 50TC 48TC 2TC
LT51870202000241FUI00 470 240 70 20 310 50 190 100
4TC 27TC 44TC 29TC 20TC 46TC 32TC 417TC
LE71870202000137EDCO0 110 510 90 510 270 00 10 48 0
40TC 0TC 42TC OTC 24TC 51TC 50TC 3TC
LT51870201988288KIS00 510 20 00 00 510 510 150 500
0TC 49TC 51TC 51TC 0TC O0TC 36TC 1TC
LT51872021987285XXX03 510 500 510 10 250 510 00 00
0TC 1TC 0TC 51TC 26TC 0TC 51TC 51TC
$20150824T094301 120 510 510 510 330 350 10 00
39TC 0TC 0TC 0TC 18TC 16TC 50TC  51TC
$20170316T094021 150 470 510 510 90 00 - -
36TC 4TC 0TC 0TC 42TC  51TC

Table 5 shows the accuracy assessment for each
image. In the case of year 2014 overall accuracy is from
83.7% to 94.2%. Fluctuations of the accuracy are not
clearly related with the image acquisition seasons, mean-
ing that accuracy is affected strongly by other factors

Table 5. Accuracy assessment of tree cover classification

Test pixels
m N available OA PA(%) UA (%) a
age No. dueto (%) forest/other forest/other @PPa
cloud cover

LC81870202014023LGNO 1000 942 98.7/90.5 90.0/98.8 0.89
LC81870202014055LGNO 1000 912 955/875 86.9/95.7 0.82
LC81870202014087LGNO 1000 936 97.8/90.0 89.6/98.0 0.87
LC81870202014135LGNO 1000 837 98.9/705 74.4/98.7 0.68
LC81870202014215LGNO 1000 86.2 98.9/751 77.6/98.8 0.73
LC81870202014247LGNO 973 884 98.9/79.2 80.6/98.8 0.77
LC81870202014263LGNO 936 928 98.2/88.1 88.0/98.2 0.86
LC81870202015074LGNO 1000 866 99.6/753 77.8/99.5 0.74
LC81870202015186LGNO 992 86.0 98.5/750 77.6/98.3 0.72
LE71870202002238KIS00 1000 838 97.2/752 72.1/96.7 0.68
LT51870202000241FUI00 656 809 955/69.2 71.3/95.0 0.63
LE71870202000137EDCO 982 832 97.8/708 742/974 0.67
LT51870201988288KIS00 1000 799 99.1/63.2 70.2/98.8 0.61
LT51872021987285XXX0 1000 788 99.6/60.9 68.9/99.4 0.59
S$20150824T094301 1000 91.1 89.7/923 91.0/911 0.82
S20170316T094021 1000 89.3 85.0/931 91.4/87.7 0.78

could be explained by outdated reference data (refer-
ence data were acquired for year 2014). Those results
are shown only for comparison of outdating rate for the
tree cover related reference data.

Research question RQ3: what are the relations be-
tween forest spectral classes and forest inventory pa-
rameters?

Table 6 shows the statistics of forest inventory vari-
ables for spectral classes. It can be seen that in most
cases spectral classes are sensitive to standing volume
not to tree species. The spectral classes with standing
volume more than 100 m’/ha were identified in all images
with high confidence level. Only in three images the spec-
tral classes with average standing volume smaller than 70
m’/ha were identified with the high level of confidence.

Forest classes with lower level of confidence in-
cluded lower standing volume values and higher level
of tree species mixture. Other land cover type classes
with lower confidence level included standing volume
values smaller than 45 m3ha or strong mixture of tree
species.

[ 2019, Vol. 25, No. 1 (49) I IssN 2029-9230

120



BALTIC FORESTRY

[0 TREE COVER MAPPING USING HYBRID FUZZY C-MEANS METHOD /.../ I L. GULBE ET AL. Il

Table 6. Average forest inventory parameter

Im No. Fore
values for the spectral classes Cl.: V is the age 1o in?,:r?ttory ¢1 C2 cC3 C4 C5 Cl6 C.7 Cl.8
standing volume (m?*ha), A is the age of the variable
stand (years), TS is the dominant tree species, LC81870202014023LGNO  TSF 0.53 057 061 049 051 - - -
: ; TS 1 11 1 1 - - -
T.SF is the percentage of dominant tree spe- v 30 6 194 112 240 . ) )
cies stands A 1 28 64 40 76 - - -
LC81870202014055LGNO  TSF 052 - 028 - 061 - 059 065
TS 1 - 1 - 1 - 11
v 247 - 133 - 233 - 48 162
A 82 - 4 - 78 - 20 57
LC81870202014135LGNO  TSF 0.58 065 - - 042 - - -
TS 1 1 - 4 - - -
v 48 246 - 136 - - -
A 18 82 - - T
LC81870202014215LGNO  TSF - 0.33 071 - 038 - 057 -
TS - 11 - 1 T
v - 93 246 - 164 - 65 -
A - 28 84 - 53 - 26 -
LC81870202014247LGNO  TSF 054 - - 047 033 - - -
TS 1 - - 1 1 - - -
v 58 - 172 100 - - -
A 20 - - 57 31 - - -
LC81870202014263LGNO  TSF - 0.37 062 066 039 052 -  0.46
TS - 11 1 1 1 -1
v - 54 204 258 123 44 - 17
A - 17 70 87 41 17 - 7

Fuzzification level was set relatively low (m=1.2) to
promote searching for more spectral classes and using
fuzzy logic only to describe pixels on the borders among
the spectral classes. The lower fuzzification level makes
result more similar to hard k-means clustering. In future
research with more accurate reference data, the higher
fuzzification level values could be investigated in the
context with forest density.

Table 7 shows percentage of tree cover for each
spectral class found in the image LC818702020140
23LGNOO. This table confirms assumption that the spec-
tral classes classified as forest are strongly related with
the tree crown coverage. The lowest tree crown cover-
age classified as TC was 57.5%. Due to the low solar
elevation in winter, the spectral classes are also impacted
by illumination forming separate spectral classes for

Table 7. Average tree crown coverage for each spectral class
found in image LC81870202014023LGNO0. Total area is 551
km?2. Sum of the area occupied by spectral classes is differ-
ent from total area because threshold T=0.45 was applied
to prepare binary mask for each FCM spectral class

Area Land cover Average tree
Class occupied cla_ss cover
No by class estimated calculated from Notes
’ (km?) by kNN ancillary data
(%)

1 a7 o 31.9 Very
nonhomogeneous
class

2 65 TC 575 Young stands, clear
cuts, borders of forest
stands in sunlit side

3 211 TC 91.2

4 32 TC 67.8 Borders of forest
stands in shadowed
side

5 108 TC 94.6

6 36 o 20.2

7 34 o 10.0

8 20 (0] 5.9

stands in sunlight and shadowed areas. Under logical
assumptions, the tree crown coverage increases as
standing volume increases confirming impacts of stand-
ing volume on the spectral classes.

Identification of afforested agricultural lands

Accuracy of afforested agricultural land plots were
calculated for images LC81870202014023LGNO0O0 and
S20150824T094301.

Only 52 afforested agricultural land points out of
280 were recognized as a forest in Landsat image. Cor-
rectly recognized plots showed average standing vol-
ume 77 m*/ha, while unrecognised showed average stand-
ing volume 44 m’/ha. The same tendency was observed
in the previous case study, so it can be concluded that
Landsat satellite images are not appropriate for identifi-
cation of afforested lands because standing volume and
stand density for these areas in most cases is too small.
Due to the fact, that afforested lands are very non-
homogeneous, location errors can also affect the results.

Use of the Sentinel data resulted in 135 correctly
recognized afforested land points for August, showing
increase of accuracy when spatial resolution increased.

Comparison with other tree cover related maps

The best classification result based on image
LC81870202014023LGNO was compared with different
freely available maps including tree cover information.
Confusion matrix characteristics were calculated for the
same test points. Table 8 shows the results. High classi-
fication accuracy in our case could be explained by up-
to-date, specially selected sample data and good spec-
tral separability of forest class in winter images.
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Table 8. Accuracy assessment of different
data sets based on test points

PA (%) UA (%)

Data set identificator OA (%) forest/other  forest/other kappa
LC81870202014023LGNO

result achieved in this study. 942 98.7/90.5 90.0/8.8 089
Global tree cover map (Hansen et. al. 2013). Tree

cover higher than 50% is considered as tree cover 85.9 96.3/76.8 78.3/96.0 0.72
compatible with this study.

European Commission’s Joint Research Centre Pan-

European Forest/Non-Forest Map 2000. 807 87.7/74.6 75.087.5 062
Tree cover map in CORINE 2012 (first row: including 845 98.9/71.7 75.4/98.7 069
code 29 as tree cover: transitional woodland/shrub, 857 86.5/85.0 83.4/87.8 0.71

second row: excluding code 29 as tree cover).

Conclusions

The aim of this study was to evaluate a very simple
methodology not requiring accurate user input: there is
no parameter input required from the user and the classi-
fication is based on unsupervised classification so the
user does not have to select sample data very carefully.
Classes are estimated using only image information and
labelled using the supervised classification. The super-
vised classification results were employed also for set-
ting a confidence level that the spectral class belongs to
the tree cover class.

Experiments showed that there is consistency be-
tween the spectral classes categorised by high level of
coincidence, however, the transition classes can differ
within this approach. Despite the high accuracy values,
consistency between the results obtained for different
dates can be unsatisfactory. A change detection analy-
sis, however, can be performed for the forest classes
with standing volume greater than 100 m3/ha. Tree cover
maps generated by this workflow could be employed for
reliable estimation of significant tree cover decrease. For
afforestation studies, images with higher spatial resolu-
tion would be recommended. The main advantage of this
workflow is simplicity and user friendliness and oppor-
tunity to select reliable spectral classes by means of the
confidence level. Of course, reference data with low qual-
ity can also affect confidence level evaluation, but in
this case, the user must pay less attention to the sample
data than using the supervised classification alone. Com-
putational complexity for this solution is very high, so
classical solutions for hybrid classification as sample
data selection from unsupervised clustering results could
be suggestible for map preparation in everyday
practice.

For practical application, image acquisition season
is not critically important, because classification results
of all seasons are affected by the transitional spectral
classes. However, winter images can provide higher spec-
tral separability between forests and other areas cov-
ered with vegetation.

Another lesson learned was related with accuracy
assessment. Despite the uniform distribution of valida-

tion points in the test area, it is very easy to acquire
high accuracy when points are located into the homoge-
neous parts of land cover. Therefore, it would be
recommendable to perform accuracy assessment using
the reference maps generated from high spatial resolu-
tion remote sensing data instead of test points to com-
pletely understand reliability for different land cover
scenarios.
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