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Abstract

The objective of this study is to better understand the relationship between forest structure and point cloud features generated
from certain airborne and space borne sensors. Point cloud features derived from airborne laser scanning (ALS), aerial imagery (Al),
WorldView-2 imagery (WV2), TerraSAR-X, and Tandem-X (TDX) data were classified as features characterizing forest height and
density as well as variation in tree height. Correlations between these features and field-measured attributes describing forest height,
density and tree height variation were investigated at plot scale. From the field-measured attributes, basal area (G) and the number of
trees per unit area (N) were used as forest density indicators whereas maximum tree height (H_ ) and standard deviation in tree height
(H,,) were used as indicators for forest height and tree height variation, respectively. In the analyses, field observations from 91 sample
plots (32 m x 32 m) located in southern Finland were used. Even though ALS was found to be the most accurate data source in
characterizing forest structure, AI, WV2, and TDX were also capable of characterizing forest height at plot scale with correlation
coefficients stronger than 0.85. However, ALS was the only data source capable of providing separate features for characterizing also
the variation in tree height and forest density. Features related to forest height, generated from the other data sources besides ALS, also
provided strongest correlation with the forest density attributes and variation in tree height, in addition to H_ . Due to these more
diverse characterization capabilities, forest structural attributes can be predicted more accurately by using ALS, also in the areas where
the relation between the attributes of interest is not solely dependent on forest height, compared to the other investigated 3D remote
sensing data sources.
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Introduction

Forest planning and wood procurement require in-
formation on forest structure from an area of interest
(Bettinger et al. 2010, Kangas and Maltamo 2006). In for-
est inventories, forest structure is most often character-
ized by using attributes such as species composition,
basal area (G), the number of trees per unit area (N),
mean diameter at breast height (dbh) and mean height
for each stand. Mean dbh and height attributes are most
often weighted by G to better describe characteristics of
dominant trees (Husch et al. 1982). Remote sensing has
been used for decades to aid forest inventories often
covering large and somewhat remote areas with limited
access (Wulder and Franklin 2012). Since the 1960s, aerial
imagery (Al) has been used for delineating stand
boundaries and, in conjunction with sample plot data
with measured forest structural attributes, visual inter-
pretation and predicting forest attributes are undertaken
for the entire area of interest (Poso et al. 1984, Wulder et
al. 2012). If more accurate estimates are required, forest
structural characteristics are determined in the field af-
ter stand boundaries have been delineated
(e.g. Holopainen et al. 2010, Wulder et al. 2012). Over the
previous decade, airborne laser scanning (ALS) and Al,
together with data from accurately measured sample
plots have emerged as information sources to produce
forest inventories (Nasset et al. 2004, Hyyppa et al. 2008,
Wulder et al. 2013). ALS have been proven to be a rich
information source for forest mapping as it can provide
information on forest height and density which are
strongly correlated with many required forest inventory
attributes (White et al. 2013a, Bouvier et al. 2015).

The acquisition of detailed forest resource informa-
tion may have a low expected return on investment in
some jurisdictions due to large areas and extensive for-
est management practices or area of interest is a non-
merchantable such as national parks or mountain ranges
and thus, costs of the ALS-based inventory may persist
as a limiting factor (Wulder et al. 2013). In countries ap-
plying intensive forestry, the cost of the ALS data ac-
quisitions and logistics are, on the other hand, limiting
the time interval between the inventories. Thus, although
ALS has proven to be a valuable resource for forest in-
ventory, there are also other alternative sensors capable
of providing information on forest structure (see e.g.
Rahlfetal. 2014, Yu et al. 2015). These alternatives have
preferable characteristics for forest inventory as well as
mapping and monitoring forest resources for large areas
with required time interval. Stereo interpretation of aerial
or satellite imagery could provide improved spatial cov-
erage and spectral information in addition to point clouds
with reduced costs (White et al. 2013b). The image-based
techniques have also reached the same level, and in some

cases have even provided more accurate estimations than
ALS for forest inventory attributes (see Yu et al. 2015).
Point clouds derived from space-borne synthetic aper-
ture radar (SAR) data can especially be cost-efficient in
providing large data coverage and enhanced temporal
resolution on forested areas (Karjalainen et al. 2012,
Solberg et al. 2013, Karila et al. 2015). It should be pointed
out that ALS is the only technique that can be used for
deriving accurate digital terrain model (DTM) for veg-
ctated areas (e.g. White et al. 2013b). Therefore, if ALS
is not used, accurate DTM has to already be available.

The objective of the study was to better understand
the strengths and limitations of certain 3D remote sens-
ing data sources for measuring forest height as well as
capturing variation in tree height and forest density,
which are the main characteristics that build the base for
accurate forest attribute estimates (e.g. White et al. 2013a,
Bouvier et al. 2015, White et al. 2016). To be able to ex-
amine the relationship between point cloud features from
certain airborne and space borne sensors and forest
structural attributes such as maximum tree height (H,_ ),
standard deviations in tree height (H_ ), G and N, as well
as correlations between them were investigated. By us-
ing simple statistical methods, we concentrated on test-
ing the capabilities of the data itself and avoided the
possibility of over fitting the prediction models. This
study is a continuation of a study by Yu et al. (2015),
where a basic suite of forest inventory attributes (e.g.
volume and aboveground biomass) was predicted using
ALS, Al and WorldView-2 satellite imagery (WV?2), Tan-
dem-X interferometry (TDX), and TerraSAR-X radar-
grammetry (TSX). To enhance the existing knowledge,
we investigated capabilities of these 3D remotely sensed
data sources in producing point clouds for characteriz-
ing forest structural attributes and concentrating espe-
cially on forest height, variation in tree height, and for-
est density, in contrast to Yu et al. (2015).

Materials and Methods

Study area and field observations

The study area of ca. 2000 ha is located in the south-
ern boreal forest zone (61.19° N, 25.11° E), approximately
145 km from Helsinki, Finland. Scots pine, Pinus syl-
vestris L., and Norway spruce, Picea abies (L.) H. Karst.,
stands dominate the undulating landscape with eleva-
tion varying from 125 m to 185 m above sea level. The
stands are mainly even-aged and single layered, with an
average stand size of slightly less than 1 ha. In total, 91
rectangular sample plots with 1024 m? area were mapped
and measured in the field during summer of 2014. The
sample plot locations were selected based on the exist-
ing ALS data collected in 2012 by National Land Survey
of Finland to represent the variation in forest height and
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densities in the study area. The sample plots represented
a range of forest structural conditions (Table 1). The
sample plot locations were determined using a total sta-
tion (5602, Trimble, Sunnyvale, California, United States),
which was oriented to local coordinate system using
ground control points measured with virtual reference
station global navigation satellite system (R8, Trimble,
Sunnyvale, California, United States) in open areas close
to each plot. From the sample plots, all trees having a
dbh larger than 5 cm were measured with steel calipers
from two directions perpendicular to each other and the
dbh was calculated as the mean of these two. Tree height
was measured using an electronic hypsometer (Vertex
1V, Haglof, Sweden) from all the trees as well. The preci-
sion of tree dbh and height measurements is expected to
be approximately 0.3 cm and 0.5 m, respectively, based
on our evaluations (Luoma et al. 2017). Then, the at-
tributes of interest (i.e. H__, H , G and N) were obtained
from the tree data for the sample plots. H_ _was simply
the height of the tallest tree from each sample plot. H_,
G and N were calculated for each sample plot as follows:

g = [Pl h) n

_ 2 g
=T @
N = e

where 7 is the number of trees in a sample plot, 4; is the
height for i tree, 4 is the average tree height in the
sample plot, g, is the basal area of tree, and 4 is the area
of the sample plot in hectares.

Table 1. Descriptive statistics, such as minimum (min), mean,
maximum (max), and standard deviation (Sdev), for forest struc-
tural attributes on sample plots (n = 91). G = basal area,
N = number of trees per unit area, H, = basal-area weighted
mean height, H = maximum tree height, H , = standard devi-
ation in tree height, and Vol = stem volume

Forest attribute = Min Mean Max  Sdev
G (m?%ha) 5.8 26.2 42.9 7.4
N (1/ha) 342 904 2881 530
He (m) 10.5 21.3 314 4.5
Hmax (m) 15.1 26.8 375 5.2
Hstda (m) 14 5.9 11.7 2.5
Vol (m®ha) 314 266.5 507.7 106.1

Remotely sensed data and generation of features
from remote sensing data

The remote sensing data sets were acquired from
the study area during summer 2014 (Table 2). ALS data
from 2500 m altitude (ALS-2500) were collected on May

22 and from 900 m altitude (ALS-900) on September 5.
Both of the ALS data sets were collected using a Leica
ALS70-HA SN7202 system (Leica Geosystems AG,
Heerbrugg, Switzerland). The Al was acquired at 5 km
altitude on May 22,2014. The imaging sensor used was
a Z/I Imaging Digital Mapping Camera (DMC) and im-
ages were captured with a stercoscopic forward overlap
of 80% and side overlap of 64%. The area was covered
by 24 images in total and stereo matching was done us-
ing BAE Systems Socet Set software. The same soft-
ware was used for producing point clouds from a cloud-
free WV2 image pair acquired on July 11,2014 as well as
from a six TSX images that were acquired in a time period
of 10 days. TDX data acquired on June 5 were used for
deriving interferometric point cloud using the SARscape
5.0 software package in the processing. All of the remote
sensing data sets and the processing of the data are
described more detailed in Yu et al. (2015). It should be
noted that point cloud heights for all data sets were nor-
malized as heights above ground using digital terrain
model (DTM) derived from ALS-900 data.

Table 2. Remote sensing data sets used. ALS-900 = airborne
laser scanning from 900 m altitude, ALS-2500 = airborne laser
scanning from 2500 m altitude, Al = aerial imagery, WV2 =
WorldView-2 satellite imagery, TDX = Tandem-X interfer-
ometry, and TSX = TerraSAR-X radargrammetry

Flying Realized mean point
Acquisition date altitude, density in the sample
km plots, points/m?

ALS-900 September 5, 2014 0.9 11.96
ALS-2500 May 22, 2014 2.5 1.18
Al May 22, 2014 5.0 1.00
Wv2 July 11, 2014 770 0.90
TSX June 29-July 9, 2014 514 0.06
TDX June 5,2014 ~500 0.05

The same set of features describing forest height,
variation in tree height, and forest density were derived
from each point cloud data and for each sample plot area
to be used in further investigations. In Table 3, derived
features and their definitions are presented. Most of the
features were calculated from the normalized points above
the 2-m threshold.

Investigating the relationship between point cloud
features and forest structural attributes

Pearson correlation coefficients (7) were calculated
between remote sensing-based features and field-ob-
served forest structural attributes. The correlations were
utilized when investigating the capability of remote sens-
ing data sets to characterize forest structural attributes
and when selecting explanatory variables for linear re-
gression models to be generated.
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Table 3. Features extracted from the normalized point clouds

Feature

Feature Definition
category
hpex Maximum of the normalized heights of all points
h Arithmetic mean of normalized height of all
Forest mean points above 2-m threshold
: Mode of normalized height of all points above
height hirode 2-m threshold
h 10% to 90% percentiles of normalized height of
P10 all points above 2-m threshold with a 10%
hpso A
increment
Penetration ratio; Nh<=2/Nwa *100, where Nuwt is
pr the number of all points, and Ni<=2 the number
Forest of points below and equal to 2 m.
density cCi= Ni/Nwa, where i =1 to 10, N; is the number
of points within i layer when tree height was
CC1CC10  divided into 10 intervals starting from 2 m, Nita
is the number of all points.
e h Standard deviation of normalized height of all
Variation in std points above 2-m threshold
tree height . o
hov Coefficient of variation calculated as hsi/hmean

Linear regression models were developed for pre-
dicting forest structural attributes namely H_,H_, G
and N, using R statistical software (R Core Team 2017).
Prediction models were developed based on results of
correlations analyses between the features derived from
the point clouds from different sensors and observed
forest structural attributes. In our prediction models,
height-related forest structural attributes (H_,_and H_ )
were modelled with only a single remote sensing feature
related to forest height or height variation as an explana-
tory variable (See feature categories in Table 3). Thus,
the feature with the strongest correlation with the field-
observed height attribute was included in the model. G
and N were modelled with one feature used for charac-
terizing forest density and another for forest height. At
first, a feature related to forest density having the strong-
est correlation with the density-related forest attribute
(i.e. N or G) was included in the model. Then, a height-
related feature with the strongest correlation with field-
observed G or N was included in a respective model, but
only after considering the correlations between the pos-
sible predictors: the maximum correlation between the
candidate features describing forest density and height
used as explanatory variables in the model was limited in
0.9 (Hudak et al. 2008). Features generated from the point
clouds from different sensors also describe variation in
tree height. In addition to information on forest height
and density, information about variation in tree height
was assumed to bring additional explanatory power to
the prediction models for G and N. Therefore, features
describing tree height variation (either 4, or /_) were
also tested as an additional explanatory variable. If re-
sidual plots revealed a dependence or trend for a spe-
cific explanatory variable, simple transformations were
tested (e.g., different powers or logarithmic transforma-
tions). Statistical significance of each feature in the model
was also considered, and only features with p < 0.05
were finally accepted as explanatory variables.

Accuracy assessment

The accuracy of the developed prediction models
was evaluated with leave-one-out cross validation and
by calculating bias, root-mean-square error (RMSE), cor-
relation coefficient (r), and coefficient of determination
(R?) between the estimated and the observed values of
forest structural attributes (i.e. H _, H_, G and N). Bias
and RMSE were calculated as follows:

n R X,
bias = 1—1( i Xl) (4)

®)

where 7 is the number of plots, )A(I is the model-estimated
value for ploti based on remotely sensed data, and X' is
the ficld-observed value for plot. The relative bias and
RMSE were calculated as a relation to the mean of the
field-observed value of X (X):

bias
bias (%) = X 100 (6)

RMSE
RMSE (%) = —

X 100 @)

The standard deviation in the estimated attributes
was also computed and compared to the corresponding
field-observed ones. Student’s z-test was used for as-
sessing the statistical significance of bias of the esti-
mated attributes.

Results

Correlations between the field-observed N, G, H__,
and H_, and the features derived from the remote sens-
ing data sets are presented in Tables 4 and 5.

From the features classified as describing forest
height, high percentiles (hp,-h, ) derived from ALS had
the strongest correlation with H__ (> 0.95) (Figure 1).
The same percentiles derived from the AI, WV2, and TDX
provided correlation coefficients 0of 0.94, 0.92, and 0.87
for H__, respectively. Height features derived from TSX
reached weaker correlation coefficients (» < 0.72)
withH_ .

Differences between the remote sensing data sets
were more apparent when analysing correlations between
the derived features describing variation in tree height
as well as forest density and field-measured H_,, G and
N (Figures 2 and 3; Tables 4 and 5). With both ALS data
sets (i.e. with flying altitude of 900 m and 2500 m), the
derived A, correlated strongly (+ = 0.89-0.91) with the
field measured H_,. Standard deviation (4_,,) derived with
the point clouds from any other 3D data set, correlated
only moderately with the field-measured H_, ( < 0.60).
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Table 4. Correlations between the fea-
tures generated from point clouds from
different sensors and the field-ob-
served forest structural attributes. The
features are grouped by categories ex-
plained in Table 3. The darkness of
grey indicates stronger correlation. N
= Number of trees per unit area, G =
basal area, H = maximum tree
height, and H_, = standard deviation
in tree height. ALS-900 = airborne la-
ser scanning from 900 m altitude,
ALS-2500 = airborne laser scanning
from 2500 m altitude, Al = aerial im-

agery

Table 5. Correlations between the fea-
tures generated from point clouds from
different sensors and the field-ob-
served forest structural attributes. The
features are grouped by categories ex-
plained in Table 3. The darkness of
grey indicates stronger correlation. N
= number of trees per unit area, G =
basal area, H = maximum tree
height, and H_, = standard deviation
in tree height. WV2 = WorldView-2
satellite imagery, TDX = Tandem-X
interferometry, and TSX = TerraSAR-
X radargrammetry

Feat.\Attr.

ALS-900 ALS-2500 Al
N G Hste  Hmax N G Hsa  Hmax N G Hstd Hmax
-0.21 0.02 0.23 0.31

-0.12
-0.19

-0.32  -0.37

hmode -020 042 047 044 022 034 037 037 -0.16
hpwo 053 -0.04 -0.09 014 052 -0.10 -026 002 -0.10
0.18
go 0.22
5 -0.22
g 0.21
k3 0.20
0.20
0.20
0.20
0.22
0.17
0.13
ccc 048 033 040 032 050 033 041 027 -0.07
. cc; 033 015 019 024 032 021 030 029 003 -045 -0.26 -0.35
% ce, 047 004 002 011 016 014 019 024 006 036 025 -0.27
§ ccs 003 010 -016 002 005 002 003 013 017 -018 -020 -0.15
3 ooy -009 -024 -042 -027 004 013 021 008 013 -006 -0.04 003
£ ¢, 023 016 -036 031 013 017 045 027 002 -003 003 0.10
ccs 027 002 -005 -0.12 -025 019 -0.35 -0.32 -0.10 020 005 0.11
cce -0.31 006 026 013 -031 002 007 -003 -0.02 032 027 018
ccro 028 006 036 022 -027 000 030 017 016 038 024 020
WV2 TSX TDX
Feat\Wttr. N G Hsa Hmax N G Hsa Hmax N G Hso  Hmax
- hsw 030 009 042 048 035 021 025 045 055
2 hy 019 052 -017 022 022 017 008 0.10 -030 -0.14 -0.10
hmean 0.20 0.55 0.20
hmode 013 023 025 0.16 0.01 0.54
hpro -0.07 000 039 031 0.14
hpzo -0.14 004 045 034 0.19
E hpo 018 010 050 043 -0.21
T hpw 021 0.11 0.20
g hpso 0.2 0.12 0.19
S hpe -0.23 0.14 0.20
hpro  -0.23 0.18 -0.21
hpso -0.24 0.22 0.21
hpsoo -0.25 -0.25 -0.22
Amax  -0.30 0.23 0.23
pr 015 006 017 -0.08 -0.07 -0.13 -027 -0.04 -0.05
ccr 017 006 -022 -003 -0.16 -0.12 -020 -0.10 -0.11
cc; 012 016 -017 003 000 003 -025 -0.16 -0.25
> occa -0.02 051 -030 -039 004 -0.07 007 003 -001 -028 -0.09 -0.10
2 ¢y 003 -049 -030 -036 -017 033 -0.35 -0.30 -0.08 -044 -0.22 -0.28
§ ccs -0.06 032 -022 -020 -0.02 023 -0.30 -0.30 001 -026 -0.20 -0.14
d cce 014 -018 -012 008 010 012 -002 -003 -002 -040 -043 -0.30
€ ¢;; 011 013 008 015 012 027 014 022 -005 -0.03 002 0.10
cce 007 036 018 018 030 021 012 010 -0.11 007 008 007
cce 020 035 019 021 -014 015 015 020 005 038 023 018
ccro 015 021 013 014 -015 017 020 023 015 040 031 023
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Figure 1. Relationship between the feature describing tree
height (i.e. 90% percentile of normalized height of all points
above 2-m threshold (%p,,)) generated from point clouds from
different sensors and field-measured maximum tree height
(H_ ). ALS-900 = airborne laser scanning from 900 m alti-
tude, ALS-2500 = airborne laser scanning from 2500 m alti-
tude, Al = aerial imagery, WV2 = WorldView-2 satellite im-
agery, TDX = Tandem-X interferometry, and TSX = TerraS-
AR-X radargrammetry

ALS-derived pr was the only feature that had a negative
correlation coefficient greater than 0.85 with the field-
measured G (Table 4). Features characterizing forest den-
sity derived from AI, WV2, TDX, and TSX provided only
correlation coefficients of -0.59, -0.56, -0.44, and -0.33,
respectively, with the G measured in the field (Tables 4
and 5). Also, ALS-derived cc, was the only forest den-
sity-related feature that had correlation coefficient close
to -0.50 with the field-measured N (Table 4). Features
characterizing forest density derived from AI, WV2, TDX,
and TSX provided only correlation coefficients of 0.17,
0.20, 0.15, and 0.30, respectively, with the N measured in
the field (Tables 4 and 5). In addition to H__, features
classified as representing forest height generated from
the point clouds from AI, WV2, TSX, and TDX, also had
the strongest correlations with the field-measured H_,
G and N when all possible features were compared. In

contrast, even considering all the features, ALS-based
features provided the most strongly correlated features
for each of the investigated forest structural attribute
(Table 4).
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Figure 2. Relationship between the feature describing vari-
ation in tree height (i.e. standard deviation of normalized
height of all points above 2-m threshold (%)) generated from
point clouds from different sensors and field-measured stand-
ard deviation of tree height (H_ ). ALS-900 = airborne laser
scanning from 900 m altitude, ALS-2500 = airborne laser
scanning from 2500 m altitude, Al = aerial imagery, WV2 =
WorldView-2 satellite imagery, TDX = Tandem-X interfer-
ometry, and TSX = TerraSAR-X radargrammetry

The forest height-related structural attributes (i.e.
H_, and H_ ) were predicted using one feature related to
forest height or variation of tree height, derived from
remotely sensed data sets (Table 6). H A was the most
accurately predicted structural attribute (Table 7). The
differences in prediction accuracies between ALS, im-
age- and radar-based point clouds were most obvious
when H_, was predicted. With ALS data, H_ , was mod-
elled using the 4 -feature as the only explanatory vari-
able as with other data sources (i.e., Al, WV2, TSX, TDX),
forest height-related features were used for predicting
H_, because of the lack of prediction power of the fea-

tures related to variation in tree height derived from
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Figure 3. Relationship between feature describing forest
density, (i.e. penetration ratio (pr)) generated from point
clouds from different sensors and field-measured basal area
(G). ALS-900 = airborne laser scanning from 900 m altitude,
ALS-2500 = airborne laser scanning from 2500 m altitude,
Al = aerial imagery, WV2 = WorldView-2 satellite imagery,
TDX = Tandem-X interferometry, and TSX = TerraSAR-X
radargrammetry

those point clouds. The relative RMSEs varied in the
ranges of 4.1-13.7% for H_, and 17.0-37.4% for H_,
depending on the remote sensing data used in the mod-
elling.

Two or three selected features were used to predict
G (Table 6). Most accurate G estimates with the lowest
biases were obtained with ALS data followed by image-
and radar-based point clouds. The relative RMSEs var-
ied in the ranges of 12.9-23.4% for G depending on the
remote sensing data used in the modelling. When ALS
features were used for predicting G, the best performing
model included three features; one describing forest
height, one variation in tree height, and one forest den-
sity (Table 6). The image-based and the radar-based
models for this attribute only used forest height and
density features as explanatory variables. The TDX-
based models predicted the forest structural attributes
except N, more accurately than TSX counterparts, while
neither of the SAR-based point clouds reached the per-
formance of the ALS and image-based point clouds when
considering estimation accuracy. With all of the devel-
oped models, N was predicted by using features related
to forest height and density. The relative RMSEs varied
in the ranges 0f 47.2-58.1%. The prediction models based
on ALS data averaged the variation in forest structural
attributes less than the models using other remote sens-
ing data (Table 6). However, variation in estimates de-
rived from the image-based models is close to the ALS-
based models in predicted G, H_ , and H . ALS-based
estimates for N include more variation compared to any
other data sources. Variation in estimated attributes
based on the TSX and TDX point clouds is generally
lower than the estimates based on ALS and Al or WV2.

Table 6. Features selected as ex-

Model coefficients and parameter estimates grouped by feature category

planatory variables in the linear

Variation in tree

X RS-data (Intercept) . Forest height Forest density
regression models, grouped by the 500 TTTE0.62) height T P
. =S . xu. . xU. Imax
feature category. Parameter esti- ¢ ALS-2500 2.51(+0.58) + 0.97(£0.02)  Amax
mates for model coefficients are g V\I;\\I/z g-gigig-gg + ?-gggtg-gg; Zpeo
. . . .64 (+0. + .05(z0. P90
prov1defi with standgrd error esti- T TIsx 12.69(x151) +  0.80(:0.08) hpao
mates (in parenthesis). G = basal TDX 12.16(x0.93) +  0.84(0.05) hpeo
_ . : ALS-900 -1.65(0.42) + 1.45(x0.08) hsta
area, H = maximum tree height, ALS-2500 A.37(0.36) +  1.34(20.06) hea
H_, = standard deviation in tree £ Al -2.60(0.64) +  0.41(20.03) hpeo
; - 2 W2 2.73(+0.65) +  0.45(x0.03) hpgo
= =
height, and N numbfr of trees per TSX 2.06(+0.75) +  0.31(:0.06) hpso
unit area. ALS-900 = airborne la- TDX 1.38(+0.51) + 0.40(0.04) hp1o
ser scanning from 900 m altitude, ALS-900 90.71(x8.64) - 19.76(t5.71) ho +  0.47(x0.09) Amex -  19.76(1.77) log(pr)
° s ALS-2500 97.74(x10.57) - 18.08(+5.79) ho +  0.51(x0.09) hmex -  21.28(x2.22) log(pr)
ALS-2500 = airborne laser scan- s A 9.41(2.31) +  1.00(£0.12) Amean -  0.21(0.07) pr
ning from 2500 m altitude, Al = E_ wv2 6.64(+2.51) + 1.26(+0.14) hmean - 0.39(x0.19) cc2
T _ . L TSX 14.13(x3.07) +  0.90(0.15) hpro -  0.27(x0.12) ccs
aerial imagery, WV2 = WorldView- TDX 12.64(x2.09) +  1.03(0.13) hpso -  0.23(x0.11) ccs
2 satellite imagery, TDX = Tan- ALS-900 1685.50(+300.19) - 83.82(+19.58) hpsmo + 33.83(215.10) cc2
i _ s ALS-2500 1778.78(+288.03) - 8463(x17.66) hpso + 33.65(15.47) ccz
dem-X interferometry, and TSX < Al 1680.02(+261.34) - 297(1025) hmx -  16.36(649) pr
TerraSAR-X radargrammetry e wv2 1494.53(+250.38) - 3327(*10.41) hmax + 9.90(+4.50) cco
= TSX  1197.81(x225.46) - 3253(10.71) hpoo +  27.32(x7.96) ccs
TDX  1228.06(+185.93) - 2943(x10.59) hpeo +  11.98(x525) ccro
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Table 7. Accuracy assessment of the pre- Hwax(m) RMSE RMSE% Bias  Bias % r Sdevest. Sdev.
dicted forest structural attributes using var- ALS-900 1.15 429 0.00 0.00 0.97 5.03 520
: : - ALS-2500 1.1 413 0.00 0.00 0.98 5.04
1ous.3D remote sensing d_ata sets. Hmax. Al 168 6.28 0.00 0.00 0.94 488
rr.laxlr.num tree h.elght, Hsld = standard devia- WV2 1.08 7.41 0.00 0.00 0.92 476
tion in tree height, G = basal area, N = TSX 3.66 13.65 0.01 0.02 0.70 3.70
number of trees per unit area. ALS-900 = TDX 2.65 9.90 0.02 0.07 0.86 4.55
airborne laser scanning from 900 m altitude, Hstd (M) RMSE RMSE % Bias  Bias % r Sdev est.  Sdev.
ALS-2500 = airborne laser scanning from ALS-900 1.11 18.88 0.00 0.00 0.89 2.21 2.50
2500 m altitude. Al = aerial imagery. WV2 ALS-2500 1.00 16.95 0.00 0.00 0.91 227
altituae, aert: gery, Al 140 2379 0.0 0.00 0.82 2.04
= WorldView-2 satellite imagery, TDX = WV2 1.41 24.00 0.00 0.00 0.82 2.03
Tandem-X interferometry, and TSX = Ter- TSX 2.19 37.35 -0.01 -0.12 0.46 1.21
raSAR-X radargrammetry TDX 1.77 30.19 0.00 -0.08 0.69 1.75
G (mf/ha) RMSE RMSE % Bias Bias % r Sdev est.  Sdev.
ALS-900 3.37 12.88 0.02 0.06 0.89 6.68 7.40
ALS-2500 3.71 14.17 0.05 0.20 0.87 6.61
Al 4.68 17.87 -0.05 -0.19 0.78 6.21
WV2 4.59 17.55 -0.01 -0.02 0.78 5.96
TSX 6.11 23.36 0.02 0.07 0.56 4.50
TDX 5.24 20.02 0.01 0.06 0.70 5.42
N (1/ha) RMSE RMSE % Bias Bias % r Sdev est. Sdev.
ALS-900 441.54 48.84 1.67 0.18 0.56 327.61 530.35
ALS-2500 426.29 47.15 0.22 0.02 0.60 341.82
Al 513.55 56.81 -4.20 -0.47 0.27 193.72
Wv2 509.92 56.40 -0.14 -0.02 0.29 201.27
TSX 499.65 55.27 -0.96 -0.11 0.34 220.81
TDX 525.08 58.08 0.68 0.08 0.20 176.46

Discussion and Conclusions

The prediction of forest structural attributes was
undertaken using simple statistical methods, a limited
number of predictors, and a sample plot size of 1024 m?
used for model development and validation. The corre-
lation analyses strengthened the knowledge that ALS
outperforms image- and radar-based techniques in de-
riving a point cloud to describe the variation in tree
height as well as forest density (e.g. White et al. 2013b,
Vastaranta et al. 2013, Rahlf et al. 2014). Furthermore,
based on our analyses most of the predictive power of
image- and radar-based point clouds is coming from fea-
tures describing height. When compared to the other
methods, ALS-based point clouds are more evenly dis-
tributed in the canopy both horizontally and vertically.

The correlations were similar among the two ALS
data sets (i.e. ALS-900 and ALS-2500) acquired with the
same sensor although the measurement density varied
from 12 points/m? (ALS-900) to 1.2 points/m? (ALS-2500)
and flying altitude from 900 m to 2500 m. Moreover, cor-
relations between features derived from point clouds
based on Al and WV2 imagery and forest structural at-
tributes were rather similar despite the different data
acquisition parameters. Although the realized mean point
density was similar in TSX and TDX data, due to differ-
ent measurement principles, bistatic interferometry tends
to provide point clouds that concentrate close to the
envelope of the canopy as the realized radargrammetric
points seem to fluctuate more within canopy. The rea-
son for this fluctuation originates from the radar speckle,
which makes the stereo tie-point matching challenging

in forested area, and the precision of elevation measure-
ment is somewhat inferior than in case of TDX bistatic
interferometric point clouds. Thus, the correlations with
forest structural attributes calculated using TSX features
were generally weaker than the ones calculated for fea-
tures from TDX and other sensors.

The accuracy of the predicted forest structural at-
tributes based on both ALS-900 and ALS-2500 data sets
were similar regardless of the different measurement den-
sities. In the same way, the accuracy of estimates based
on both Al and WV2 imagery did not remarkably differ
from each other. However, ALS outperformed other re-
mote sensing materials consistently, but differences be-
tween the ALS and imagery-derived point clouds were
rather minor in our study area. Similar findings have also
been reported by Nurminen et al. (2013) and Vastaranta
etal. (2013) for ALS and aerial stereo imagery, and Straub
etal. (2013) for ALS and satellite stereo imagery. Com-
pared to Yu et al. (2015), in our study ALS provided con-
sistently the most accurate estimates followed by im-
age-based and radar-based prediction models. In this
study, difference between the ALS and image-based data
sets was most notable when predicting tree height vari-
ation (i.e. standard deviation of tree height).

The point-clouds based on SAR could not describe
the forest structure at plot level as accurately as ALS or
optical imagery, consequently models for forest struc-
tural attributes based on either TSX or TDX produced
less accurate estimates for forest structural attributes.
This is in line with the findings by Karjalainen et
al. (2012), Karila et al. (2015), and Yu et al. (2015). In ad-
dition, the method to derive a point cloud from radar
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data affected the prediction accuracy: the estimates for
forest attributes based on TDX were generally more ac-
curate than the estimates based on TSX data, which was
expected based on the correlation analysis. However, it
should be kept in mind that the measurement densities
in TDX and TSX data sets were only ~0.05 points/m?.
Due to the lower point density and different measure-
ment principles, it cannot be even expected that TDX or
TSX point clouds could capture the variation in tree
height and forest density as detailed as ALS. However,
the point cloud features based on satellite radar data,
especially on TDX, correlate with the forest height and
can be used consequently in the prediction of forest
structural attributes even at plot-level at reasonable ac-
curacy.

Based on our analyses, when forest structural at-
tributes are predicted using the features derived from
image- or radar-based point clouds, most of the predic-
tion power is coming from the features describing forest
height. In addition to features related to forest height,
ALS is capable of capturing variation in tree height as
well as forest density which is important in complex for-
est environments. The capabilities to characterize forest
height and density as well as variation in tree height are
limited with image-based and radar-based point clouds
although the attributes that are associated with forest
height can be predicted rather accurately for the pur-
poses of the forest planning and wood procurement in
stands that are mainly even-aged and single layer. How-
ever, users of the image-based or radar-based point
clouds should be aware, that the estimates of forest in-
ventory attributes that are not directly related to forest
height (e.g. G or N) may have limited accuracy in the
complex forest environments.

In this study, the capabilities of point clouds de-
rived from ALS, AI, WV2, TSX, and TDX data to charac-
terize variation in forest structure were investigated.
Features derived from ALS, AI, WV2, and TDX corre-
lated strongly (> 0.85) with maximum tree height whereas
the correlations calculated from TSX features remained
close to 0.7 after the point clouds were normalized with
detailed ALS-based DTM. ALS was the only data source
capable of providing separate features for characteriz-
ing also the variation in tree height and forest density.
With AI, WV2, TSX, and TDX, features describing for-
est height were also the most strongly correlated with
the variation in tree height and forest density. This find-
ing indicates that forest inventory attributes that are
correlated with height can be predicted rather well also
with AI, WV2, and TDX, but if it is important to charac-
terize also the forest density and tree height variation in
area of interest, ALS data should be used. When con-
sidering forest inventory using any of the investigated
data sources first time, ALS is required, because all the

alternative methods require detailed DTM for height
normalization and ALS is the only option for mapping
ground elevation and forest height simultaneously.
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