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Abstract

Allometric equation is the most extensively applied method for estimating aboveground biomass (AGB). However, most studies
focus only on an equation establishment and its precision and ignore errors in coefficient. Hence, the current paper aims to address the
heteroscedasticity limitations of linear regression, which is the most extensively used method for solving the coefficient of allometric
equations. In this paper, we proposed weighed linear regression with new weighed factor for estimating AGB. At meantime, we
compared this method with other two common methods, which are simple linear regression and nonlinear regression, through solving
their coefficients, accuracy assessment, and biomass estimate which forward compared with the biomass of 71 trees associated with 4
species at Xiaolong Mountain in the Gansu province of China. The results showed that the precision of coefficients of power progress
of weighted linear regression and nonlinear least square regression is very close, and higher than the linear regression.
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Introduction

Biomass estimation is very important in net primary
productivity, energy conversion, nutrient and carbon
cycling, biomass estimation (Saint-Andre2 et al. 2005,
Delitti et al. 2006, Saglan et al. 2008). The most precise
way to calculate biomass is through cutting down trees
and measuring the weight of shoot system, which in-
cludes the trunk, branches, and leaves (Saglan et al .2008,
Van et al. 2000, Norris et al. 2001, Brown et al. 2004,
Wadham-Gagnon et al. 2006). Unfortunately, this destruc-
tive method will bring permanent and irreversible dam-
ages, including ecological system disasters, and human
financial resource wastes (Delitti et al. 2006, Kale et al.
2004). Therefore, non-destructive techniques have re-
cently become very common. These non-destructive tech-
niques are based on the regression models that establish
the relationship between the biomass growth, and its pa-
rameters (Brown et al. 2004, Lott et al. 2000, Claesson et
al. 2001, Saatchi et al. 2007). Throughout the world, it is
common to use the two biomass growth parameters,
which are tree height (H), and the diameter at breast height

(DBH) to develop the allometric equations needed to es-
timate the biomass.

Allometric equation is the common method for esti-
mating AGB which show no significant difference when
compared with actual biomass (Mary et al. 2001). The
error of estimated biomass is determined through four
factors; tree measurement, allometric model selection,
single plot size, and landscape-scale representatively.
Moreover, the allometric model itself is a source of error.
For example, at present, almost all references utilize loga-
rithmic conversion to linearize the data when using allo-
metric equations for regression analysis (Chave et al.
2005). Subsequently, standard linear regression model is
utilized to estimate the coefficients “a” and “b.” This is
process called linear regression. Furthermore, the power
function of linear regression is widely recommended in
probability and statistics materials at present. However,
this method results in serious heteroscedasticity.

Heteroscedastic studies are more common in the field
of economics, because economists use the linear regres-
sion model and hypothesis testing to test heteroscedasti-
city, and reduce the heteroscedastic influence on the re-
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gression by using the weighted approach. Wang and Feng
(Wang and Feng 2006) carried out studies on the current
and widely used logarithm conversion method to address
the power function problem, especially heteroscedasticity.
Heteroscedasticity was corrected by weighted regression
by many authors applying to every observation a weight-
ing equal to the inverse of the variance of the residuals.
Xu indicated that determining the weight function is one
of the key problems in estimation methods for weighted
regression (Xu 2003). Different weighted factors may be
tested depending on the independent variables of model
(Schlaegel 1982, Parresol 1999, Parresol 2001, Cunia 1987,
Tang et al.2001). The optimization methodology of the value
of the exponent k was proposed by Harvey. Estimation of
weights when fitting nonlinear equations was described
also between others by Williams and Gregoire (1993). The
other way for solving the heteroscedastic problem is the
nonlinear regression which was wildly used in western
countries (Williams and Gregoire 1993, Reed and Green
1985, Tang and Wang. 2002, José de Jests Navar Chaidez
etal. 2004, Liand Zhao 2013).

These studies show that both the weighted regres-
sion and the nonlinear regression had similar results. In
addition, their standard deviation and correlations indi-
cate that they are clearly superior to that of traditional
logistic conversions. Arevalo et al. (2007) also applied
the traditional logarithm transformation, and the weighted
and nonlinear regression methods to study the AGB of
four asexually reproducing trees in New York. Arevalo et
al. (2007) used mathematical software to subject the sam-
ple tree data, wherein, they concluded that the accuracy
of the former two functions are nearly the same, and that
the latter has a high standard deviation and index corre-
lation. Feng (1999) cited the statistical data from Basker-
ville (1972), and pointed out that the allometric equation
coefficient calculated using logarithms reduces the
biomass by 10% to 20%. It is important to note that this
error can be reduced, and that the current development
of computer technology now allows obtaining nonlinear
parameters easier. In the study conducted by Cole and
Ewel (20006) the calculations of four valuable tropical tree
species pointed out that ignoring the heteroscedasticity
of dependent variables often results in underestimating
tree biomasses in the final equation.

Thus, this study was tried to solve the problem of
heteroscedasticity on biomass calculation, and to de-
velop allometric equations for biomass estimations of the
different species in China.

Methods
The allometric equation, W= a(DBH’H)", is used in

this study for calculating AGB, because it is the most
common model in calculating a single tree biomass in

China (Shen Y.Z.2011, Du W.Z.2012). In this equation,
the DBH is the diameter at breast height, the H is total
tree height, and the W is the AGB. For estimating differ-
ent methods for solving the coefficient @ and b of allom-
etric equation W= a(DBH’H)", take Xi and Yi as variables
for the observation value of DBH’H and W at the ith.
Once this is completed, the allometric equation W =
a(DBH’H)" can be written in the form of the power func-
tion y, =ax’+¢, (i=1,2L ,n), and after log transformed,
the power function is be changed into a simple linear
regression form: In(y; —¢;)=Ina+bln x,, Wwhere & is the ran-
dom error**3'. The most common method to estimate a
and b of allometric equation of is the logarithmic trans-
formation, which is usually applied to convert the
nonlinear power function to a log-linear model.

Linear regression
The power function is as follows:

(i=1’2’L 77’1) (1)

Move & to the left side of the equation and trans-
form to logarithm form:

)
yi =ax; €.

In(yi - &) = Ina + blnx; 2)
That is

In(yi- &) =In[yi(1 - &/y)] = Inyi + In(1 - &/y;) = Ina + blnx; (3)
make ki= &/ yi

Considering that k; is very small, we use series ex-
pansion on V., and only for once remainder, we can
get the following formula:

Iny; = Ina + blnx; + k 4)

Make yi’= Iny;

a’=lna

xi’ = lnxi

We can get:

yiza’+bxi’+ki (5)

According to the least square criterion, make

Y kl=min j and & can be calculated, considering

=1

@', b is the estimated value of @ and b, then ;4 = e&, , this is
the approach that has been commonly used — the power
function linear regression.

Obviously, because the power function linear regres-
sion only merely satisfies the need of minimizing the quad-
ratic sum of relative error of dependent variables, instead
of absolute error, coefficients 4,b obtained by

Ykl =min not Y e =min, therefore, difference certainly be
i=l i=1
contained.

The &’ b which are derived from linear regression are
the estimated value of a and b. Make v, = ax’ —y,, the

estimated value of o* can be obtained through the fol-
lowing formula:
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cz (n-2) ©)

The Co-factor Matrix obtained by cofactor propaga-
tion law as the follow:

Qa’a’ Q/ TAY AT T\t
T l=ATA) A QuvAATA 7
Where A" - 1, 1/ 1,
X ox ot X

Furthermore, 6'ﬂ| &q (estimation of Variance of

-

a b)and 6'a]b, (estimation of Covariance of & 5 ) can
be calculated:

"2 A2 a2

O-ﬂ'ﬂ =0 d Q&ﬂa' (8)
A YA

O, =0"0aQ.. )
A2 _ A2

6% =60 (10)

Weighed linear regression
Multiply y; on both sides of the equation:
yi=a +bx] +k,
and considering k; = & / )1, we can get a new observa-
tional equation
vy =ya+yxb+e,

(1)

Under the condition that ) & = min , we can get co-

i=1

efficients a. b (to distinguish linear regression, we sup-

pose that the estimated value of a, b is 4, 5) and error
function :

v, =y, +yxb-yy (12)
the unbiased estimated value of & can be calculated us-
ing the following formula:

é? =gvf/(n—2} (13)

Here, the weight of Iny; is yiz, and it makes iff = min -

i=1
It is more reasonable than the linear regression. The Co-
factor Matrix obtained by cofactor propagation law as
follow:

[Q Q*""£J=(B"B)" (14)
9
where
nonx
Ba=|rr Nt

estimation of the Variance and estimation of Covariance

of 4, E; obtained by formulas (8), (9) and (10).

Nonlinear least square regression

Although weighed linear regression is a simple proc-
ess, it is only an approximation method. In this part, we
present a more precise method as the nonlinear least
square regression.

As fory = ax’, ifi(i = 1,2,..., n), the dependent vari-
able is y;, and the measurement error is &, we can derive
the following formula:

yvi=a(x)' +e,(i=1,2,.,n).

Ifk(k=0,1,2,.., m), the approximate value of a, bis
a®™, b™ we can derive the following formula:

(k o

(ky _ (k) b
yi o =a (X))

The following formula was then derived using a
Taylor series:

kY
s K stk k) ey (k) 10 P
Ye=yi i gyos T +y x0T + RV 48,

R is the second order remainder.

make
¥ 1a® 0 In(x)
¥ 7a® 3P In(x,) s
i : : X = Stk
"xz ) : , 5 ,
y;h ,.’”“] }I'[,ﬂ lll(_\‘”)
x 0] :
n=-n R} g,
(3] (k)
Vo— ¥ & £
Ln'u:'_ % R = 2 £ = 2
mel , hxl , nxl
, B ®
L Rn £

The formula can be written as:

A X

() Net) L(k) + R(k) te=0

(17)

In formula (17), take )"({,“1} for the estimated value of

X(M), and V; for the most probable error of y;, then

rik)
l|
VH:]
A
Ve = :
il ‘

&
and error equation of (16) is

Vi = Amif_m =Ly, (1)

in which V1) contains the observation error and the
second order remainders error.

Utilize least square criterion on (18) to solve )‘(m”:
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. r§r(rk||)] % . =
Xy = 5‘“,”)=(A[n:Am) ALy (19)
b

Furthermore, the k+1th estimated value of a, b is

a(hl] (}[&J S-UJ
roesy || 2o & "‘;H
b b S,

Calculation steps:

(20)

~

1) The input coefficients ( 5(0}‘ 5 ) used were ob-
tained from the linear formula, then calculate i, Aq),

L. Use the formula (19) to get X, and Er‘”) 5 ob-
tained by the formula (20).

2) Taking a" b as new estimated value of @ and
b, calculate y:", Ay, Ly and use formula (19) to solve
X ., use formula (20) to solve a® 5@\

- 72 .
3) Take @'’ 5'*) as new estimated value of a, b to get
r
- (3 T . . o
a® 5" andso on, up to V,; V,, reach minimum or 5",

5"is enough small (at this time R® — 0).
Assuming that the iteration ends at the k+1th step,
the standard variance formula is:

G = ViV /(0 = 2) @1
Furthermore, &al , (3""1 (estimation of the variance of

a, h)and &,, (estimation of the covariance of & /) can

ayly
be calculated as follow:

[" ":f] - G A"

Tab U}:

(22)

Model evaluation

In order to determine the best allometric model, we
used the adjust coefficient of determination (R?), the root
mean square error (RMSE), Akaike Information Criterion
(AICc) to analyse the statistics of each regression model.
Coefficient of determination (R?) is common indicator that
can tell us what percentage of the total variation in a
dependent variable is explained by the predictor vari-
ables and how well the model fits the data. The larger the
value of adjusted R the better the regression model is
(Mann 2001). The adjusted R? will penalize you for add-
ing independent variables (K in the equation) that do not
fit the model. In regression analysis, it can be tempting
to add more variables to the data as you think of them.
Some of those variables will be significant, but you can’t
be sure that significance is just by chance. The adjusted
R’ will compensate for this by that penalizing you for
those extra variables (Mendenhall et al 2006)

2
Adjusied =1~ (23)

where N is the sample size, p is the number of independ-
ent variables, and N-p-/ is called the degrees of freedom
(df) of the regression.

The root mean square error (RMSE) (also known as
the Root Mean Square Deviation, RMSD) was used as a
standard statistical metric to measure model performance
in biomass research. It is the widely way used in model
evaluations. While it has been used to assess model per-
formance for many years, there is no consensus on the
most appropriate metric for model errors. In the field of
biomass, many present the RMSE as a standard metric
for model errors, the RMSE penalizes variance as it gives
errors with larger absolute values more weight than er-
rors with smaller absolute values. The RMSE is calcu-
lated for the data set as

RMSE = [SSE/n = (24)

%Zm -9
where y; is the observed dry weight, y;is the predicted
dry weight, n is the sample size, accounts for the unex-
plained or “leftover” variance of the regression model
(Mendenhall et al. 2006). The smaller the RSME, the bet-
ter the regression model is (Arrest & Franklin 2007).Mean-
while, 47C has been chosen as a criterion for regression
model, selection. A/C measures the amount of informa-
tion lost in the specific model, hence, the “best” model is
the one with minimum A/C value (Chave et al. 2014,
Bumham and Anderson 2002, Basuki et al. 2009). Given n/
k <40 in this study, a bias adjustment was required for
small sample size, expressed as A/Cc in Equation 25:

AICe = n*ln (RSS/n) + 2%k + (2%k*(k+1))/(n-k-1), (25)

where n is the number of samples, & is the number of
independent variables in the model, and RSS is the re-
sidual sums of the squares from the regression model.

Herewith, adjusted R?, RMSE, AICc, should provide
sufficient justification for the strength of the allometric
regression models.

Results

Data collection

The study site is located in the Xiaolong Mountains
(33°312-34° 342 N, 104° 232-106° 432 E) in the south-
eastern part of Gansu Province. It covers an area of
623,808.0 hectares. The area is warm temperate, with a
semi-humid continental monsoon climate, an average
annual temperature of 7 °C to 12 °C, and an annual rain-
fall of 460 mm to 800 mm.

Xiaolong Mountains has a forest area of 338,829.8
hm?, a forest coverage rate of 62.46%, and a stocking
volume of 25,536,825 m?, 86.9% of which is young and
middle-aged forest, and 13.1% is near mature, mature,
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and over-mature forest. The dominant species are mainly
hardwoods, with oak trees as the majority. Sharp tooth
oaks, Chinese pines, and oriental oaks make up 71.52%
of the total area of the forest and 71.42% of the total
volume. Mixed miscellaneous forests are also dominant
in the area, which includes Northeast China ash, dog-
woods, maple, linden, and cedar.

The dataset we used is a subset of the data collected
in the Dang Chuan Forestry Centre of the Xiaolong Moun-
tain Forestry Bureau. Table 1 gives the descriptive statis-
tics of the sample trees: a total 71 felled sample trees were
included in the experiments, 10 Pinus armandii Franch,
10 Betulaalbo-sinensis Burk, 19 Pinus tabuliformis and
32 Quercus aliena var. acuteserrata. DBH and height of
all of the selected trees were measured after felling with a
measuring tape, and the biomass of each was calculated
after sampling and then after drying.

Table 1. The descriptive statistics of the sample trees

Species Sas?;gle DBH* (cm) Hz;g)ht Total(ﬁlé))mass
Quercus dliena. 32 43477 4924  25-1786.97
Pinus tabuliformis 19 4.7-40 6-17.5 3.42-538.03
Pinus armandii Franch 10 4.6-38.3 3.5-15.8 4.08-566.41
Betula albo-sinensis Burk 10 6.5-44.2 7.9-223  8.41-1185.49

*DBH is diameter at breast height

After sample trees’ felling, the material was carefully
separated into the following compartments, according to
the procedure adopted by Soares and Schaeffer-Novelli
(2005): leaves; branches (diameter at large end C2.5 cm);
trunks; and barks. All of the compartments were weighted
in the field (wet biomass). Then the compartments were
oven-dried, and their dry biomass was weighted. The dry
biomass of the tree was finally computed as the sum of
all the compartments’ dry biomass.

Allometric equations

Based on the observed biomass of the sample trees
in the experimental plot, the power function of linear re-
gression, the weighted linear regression and nonlinear
regression were built, the coefficients estimates and esti-
mated precision value of AGB are shown in Table 2.

It can be seen from Table 2 that usually the coeffi-
cients obtained using power function weighted linear
regression and nonlinear least square regression are very
close, but differ remarkably from the one obtained using
linear regression. Also the absolute values of Variance
and covariance of coefficients of weighted linear regres-
sion and nonlinear least square regression are similar,
and lower than the linear regression. Therefore, the re-
sult is that the precision of coefficients of weighted lin-
ear regression and nonlinear least square regression is
very close, and higher than the linear regression.

Table 2. Parameters of three allometric equations for 71
trees, 4 species at Xiaolong Mountains, China

Tree species equations a b [ 0‘;‘b d, (o
Quercus aliena 1 02756200 1.0426643 0033444 -0.025373 1240574 0.052280
var.acuteserrata 2 02750195 1.0957233  0.008671 -0.000189  0.025215 0.043963
3 02662959 1.1148816  0.008657 -0.000197  0.026106 0.043202
1 02063066 0.9712463 0.027343 0.014792 0733982 0.031515

Pinus 2
tabulformis 02081705 1.0625462 0.009669 -0.000567  0.071958 0.028979
3 02027038  1.0780950 0.009904 -0.000635 0.077105 0.028552
1 02576481 0.9104142 0.086994 0.087404 1111761 0.040712
P’"”,f;g’g:”d” 2 02816293 0.9128282 0.015492 -0.001018  0.084816 0.033165
3 02744900 0.9351187 0014779 -0.000912  0.081089 0.032644
1 02790090 1.0099986 0.077015 -0.080495 1150311 0.062596

Betula albo- 2
edirasn 02922114  0.9661464 0.027217 -0.001870  0.075183 0.062686
3 02779062 0.9956368 0.026544 -0.001876  0.077041 0.061354

Equations, “1”, linear regression; “2”, weighted linear regression; “3”, non-
linear regression; (3'" — estimation of Variance of ¢ ; c%l,,,estimation of Variance

off;;é'

ah?

estimation of Covariance of r]', b d'”, the estimated value of the

standard error fitted by biomass

Model evaluation results

Table 3 shows the parameter estimates and the good-
ness-of-fit statistics of three equations. It is obviously
seen that all parameter estimates were significant at
P<0.01. All the equations performed well for all the spe-
cies. According to the model evaluation methods, the
higher R?, while the lower RSME and AICc, the better
fitting the equation has. As expected, only the equation
for Larix gmelinii’s RSME and AICc obtained by nonlinear
regression is slightly larger than the weighted regres-
sion, but smaller than simple linear regressions. For the
other 3 species, the order of coefficient R’ is common
linear regression< weighted linear regression < nonlinear
regression, while the order of RSME, while the order of
AICc is common linear regression> weighted linear
regression>nonlinear regression. Therefore, for these
three methods, the nonlinear method has best fit. Our
results are depicted in the following tables.

Table 3. Results of the fit of three allometric equations for
4 species to predict aboveground biomass

Tree species equations R? RSME AlC P
Quercus aliena 1 0.9890 0.5062 255.237 <0.001
var.acute serrata 2 0.9923 0.4256  244.248 <0.001

3 0.9925 0.4183 243171 <0.001
1 0.9827 0.2977  132.897 <0.001
Pinus tabuliformis 2 0.9855 0.2732 129.814 <0.001
3 0.9859 0.2694 129.315 <0.001
1 0.9831  0.3641 75.719 <0.001
Pinus armandii 2 0.9888  0.2966 <0.001
71619
Franch
3 0.9892  0.2919 71342  <0.001
1 0.9883  0.5598 84522  <0.001
Bgtula 'a/ba- 2 0.9882  0.5606 84.492 <0.001
sinensis Burk
3 0.9887  0.5487 84.081 <0.001

R? — coefficient of correlation; SEE — standard error of the estimate;
AIC — information criterion; P — significant coefficient
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Discussion

Most studies on tree biomass are based on allomet-
ric models due to the difficulty of direct measurements,
which involve the cutting and weighing of trees. These
allometric equations are widely used in estimating tree
biomass, both coniferous species, and broadleaf species,
in many countries, including china. It is beneficial to con-
trast results with the previous analysis of Shen et al.
(2011) and Du et al. (2012), who designed the allometric
equations utilized in this study. In their analysis, only
one species (Larix gmelinii for shin and Pinus tabuli-
formis for du) was used as a dataset for designing the
model. According to the final prediction model, the R?,
which depicts the individual tree biomass, is 0. 968 for
Larix gmelinii, and 0.96 for Pinus tabuliformis. These
calculations are less precise than the R’calculated in this
study, which was more than 0.98 for four species. Even
though our sample data was a little small, there are many
existing studies utilizing this allometric equation, in which
the researched had used a small sample. For example,
Russell (1983) weighed 15 trees in Para, Brown et al. (1995)
weighed 8 trees in the Rondonia, and Deans et al. (1996)
weighed 14 trees in Cameroon. Furthermore, within this
study, we concentrated on coefficient precision for the
power allometric equation, which may have a certain im-
plication for future research.

Allometric model of W = a(DBH*H)" is generally fit-
ted using the log transformation approach, followed by
the linear regression. It is important to note that the ini-
tial linear regression would not be used if hetero-
scedasticity was not detected. However, the data for trees
are strongly heteroscedastic, exhibiting increasing vari-
ation in biomass, with an increase in diameter (Chave et
al. 2005, Mascaro et al. 2011). These considerations are
extremely important for evaluating heteroscedasticity,
which was previously mentioned by Gujarti and Porter®.
There are two ways in which the treatment for the hetero-
scedastic error, commented by Carlos R. Sanquetta et al.
(2015), can be avoided. One treatment is utilizing the
method of weighted least squares when heteroscedasti-
city is known. The other treatment involves utilizing
nonlinear fitting without log transformation. These two
treatments were frequently applied to the allometric equa-
tion utilized within this research.

Using DBH*H (unit: m’) as the X-axis, and observed
biomass W (unit: kg) as the Y axis, the scatter diagram and
fitting curve of AGB are shown in Figure 1. As you can see
from Figure 1, the curve fitted by the weighted linear re-
gression, was also fitted by the nonlinear least square re-
gression in this approach. These calculations are far from
the curve fitted by the common linear regression.

Within Figure 1, the red dashed line represents the
curve fitted by the common linear regression, the black

Quercus aliena var. acuteserata Pinus tabuliformis
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Figure 1. Measured and pre- *  SieeredvabicofAcs

dicted an aboveground biomass
of 71 trees at Xiaolong Moun-
tain

== == | inear regression

- = Weighted linear regression

Nenlinear regression

dashed line represents the curve fitted by weighted lin-
ear regression, the solid green line represents the curve
fitted by the nonlinear least square regression, and the
purple square dots represent the observed biomass value.

The coefficients for the calculation utilizing the
power model, the nonlinear least square regression
method had a higher precision, but needed iterative cal-
culations that are relatively difficult to conduct. These
calculations weight the linear regression method with
slightly lower precision than nonlinear regression method;
however, the linear method that calculates one degree
term. This is a relatively simple method because the pre-
cision for the linear regression method is commonly low.

In addition, the observational error for y should fol-
low the same normal distribution without gross error.
When studying the forest biomass utilizing the allomet-
ric equation, and constructing models with the two meth-
ods above, an emphasis needs to be placed on the sam-
ples with large diameters. If, for example, gross error of
the organ’s biomass exists, then great influence will re-
sult on the regression outcome.

Conclusion

This paper researches on the methods of estimating
biomass of a single tree. In the region of Xiaolong Moun-
tain, we used three methods of common linear regres-
sion, weighted linear regression, and nonlinear regres-
sion, in order to establish the allometric equations for 4
species. Our results indicate that nonlinear regression
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has the best precision but hardest to calculate. There-
fore, when utilizing allometric equation, we highly re-
commend weighted linear regression out of all the possi-
ble options, which has similar accuracy but more simple
compared with nonlinear regression method.
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