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Introduction

Regularly updated regional data about forest re-
sources are required for sustainable forest management 
planning and assessment of available biomass for energy 
production. Two forest inventory methods are used in 
Latvia: the first is sampling based National Forest Inven-
tory (NFI) and the second is regular stand wise forest in-
ventory (RFI or forest management inventory). The for-
est management inventory in Latvia ensures information 
about forest management units (stands) which are mapped 
and inventoried according to specific rules (Forest 2000) 
using aerial photos and field inspection. According to le-

Assessment of Different Estimation Algorithms and 
Remote Sensing Data Sources for Regional Level 
Wood Volume Mapping in Hemiboreal Mixed Forests
MAIT LANG*1,3, LINDA GULBE2, AGRIS TRAŠKOVS2 AND ARTŪRS STEPČENKO2

1 Tartu Observatory, 61602 Tõravere, Tartumaa, Estonia, mait.lang@to.ee
2 Engineering Research institute “Ventspils International Radio Astronomy Centre”, Ventspils University College, 
Inzenieru 101, LV-3601, Ventspils, Latvia
3 Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, 
Estonia

Lang, M., Gulbe, L., Traškovs, A. and Stepčenko, A. 2016. Assessment of Different Estimation Algorithms and Re-
mote Sensing Data Sources for Regional Level Wood Volume Mapping in Hemiboreal Mixed Forests. Baltic Forestry 22(2): 
283-296.

Abstract

Remote sensing data provide opportunity to estimate wood volume in vast areas with lower financial expenses compared to 
field measurements. In this study, we tested wood volume mapping of hemiboreal mixed forests at stand-level and regionally using 
forest management inventory data as a reference set, various remote sensing data sources (Landsat-5 TM, Landsat-7 ETM+, SPOT-4 
HRVIR, ALOS PALSAR, airborne laser scanner data) and three nonparametric estimation algorithms (k-nearest neighbours (k-
NN), general regression neural network, regression tree). The experiment in Kurzeme region, Latvia, was organized as case studies 
regarding some aspects of the estimation procedure: impact of randomness in reference set sample on the k-NN volume estimation, 
assessment of the influence of the image and training plot combination on the k-NN volume estimations, comparison of the estima-
tion algorithms and comparison of multisource and multitemporal data fusion. All the estimators performed quite similarly due to 
the complex relationships between forest inventory data and remote sensing data. The smallest RMSE=60 m3/ha was achieved in the 
special study site in Slitere National Park by combining five feature variables that included the 70th percentile of the ALS point cloud 
height distribution, green band from the Landsat and SPOT image, and NIR and SWIR bands from the Landsat image. When spec-
tral feature variables and reference samples from full-size satellite scenes were used, the RMSE of wood volume estimates ranged 
from 72 m3/ha to 129 m3/ha for forest in the scenes. Higher estimation accuracy was obtained with mid-growing season Landsat 
images and then with SPOT images from the snow-covered period. Case studies indicated that the estimation accuracy depends on 
a particular image, but the randomness in the reference set does not impact accuracy substantially when there is a sufficient number 
of reference sample plots. The combined influence of a particular image and reference samples for the image was detectable and the 
RMSE of the stand-level wood volume estimates in the image overlap areas ranged between 17 m3/ha and 42 m3/ha, and mean error 
of estimate ranged from - 26 m3/ha to 21 m3/ha.

Keywords: wood volume, multisource remote sensing data, nonparametric estimators, forest management inventory.

gal provisions in Latvia, the data are updated with 20-
year interval for each stand if no management activities 
are done by the forest owner (Forest 2000). Construction 
of wood volume (V) maps using remote sensing data and 
supervised estimation algorithms offers additional input 
to forest inventories such as the RFI for overall analysis 
of the current state of the forests and for change detection 
(Wulder and Franklin 2003). Multispectral satellite im-
ages provide data over vast areas and give an opportunity 
to produce fast wall-to-wall estimates at lower financial 
expenses compared to field measurements required for the 
RFI (Lu 2006). However, the practical use of the remote 
sensing image data is limited by the relationships between 
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extracted feature variables and the forest inventory vari-
ables of interest and the properties of processing algo-
rithm. Lu (2006) concluded that major approaches to the 
estimation of biomass are regression models; algorithms 
based on k-nearest neighbours and neural networks. The 
k-nearest neighbour estimator (k-NN) has attracted a 
lot of interest for forestry applications (Tomppo 1991, 
Franco-Lopez et al. 2001, McRoberts and Tomppo 2007, 
Gjertsen 2007). The effectiveness of k-NN is determined 
by the simplicity of the method: convenient inclusion 
of new data sources, ability to estimate many response 
variables at once including both numerical and discrete 
variables, and the ability to preserve natural variations in 
sample data (Holmström and Fransson 2003, McRoberts 
2012). However, the drawback of k-NN is high computa-
tional complexity in time and space motivating compari-
son of k-NN and other estimators to achieve equivalent 
or higher accuracy with a decreased computational cost.

The accuracy of wood volume estimation depends 
on the type of remote sensing data and spatial resolution 
is one of the most important characteristics of images 
(Maltamo et al. 2004). The most recent and popular data 
source for wood volume and biomass estimation is air-
borne lidar data (Li et al. 2008, Zhao et al. 2012). Howev-
er, the use of lidar data is limited by high acquisition costs 
(Koch 2010). Hyyppä et al. (2000) investigated optical 
spectral data from Landsat-5 TM, SPOT PAN and XS, 
and radar data from ERS-1/2 for the retrieval of forest 
stand attributes with the main focus on stem wood vol-
ume and concluded that optical data are more informative 
than radar data. Particularly, SPOT 20 m and 10 m spatial 
resolution images were found to be better (standard er-
ror 78.9 m3/ha) than 30 m Landsat images (standard er-
ror 87.5 m3/ha). Similar results for Finnish forests were 
achieved by Mäkela and Pekkarinen (2004) using Land-
sat-5 TM data (RMSE 71.3-80.5 m3/ha). Maltamo et al. 
(2004) emphasized the saturation of forest reflectance and 
wood volume relationship and pointed out that after can-
opy closure the observed spectral values do not correlate 
well with wood volume. Magnusson et al. (2007) evaluat-
ed ALOS PALSAR Fine Beam Single Polarization mode 
data and achieved an RMSE of 30% for the best case. 
There have also been studies to evaluate the combined 
processing of different sensor data and multitemporal 
data (Maltamo et al. 2004, Maltamo et al. 2006, Popescu 
et al. 2004, Nelson et al. 2007, Cartus et al. 2011). Since 
each specific data source has its limitations, the multi-
source approach in the general case may improve estima-
tion accuracy (Koch 2010).

The aim of this study was stem wood volume (m3/ha) 
mapping in mixed hemiboreal forests at stand-level and 
for a larger region using a reference set drawn from a for-
est management inventory database, various remote sens-
ing data sources and three non-parametric estimation al-

gorithms. This study is presented as case studies devoted 
to some particular aspects of the procedure e.g. choice of 
algorithm or impact of the image acquisition season on 
the estimation accuracy. The following case studies were 
performed:

• evaluation of the performance of SPOT-4 HRVIR, 
Landsat-5 TM and Landsat-5 ETM+ satellite images for 
wood volume mapping using k-NN;

• analysis of the influence of reference set random-
ness on the wood volume estimation accuracy;

• assessment of the combined influence of image 
characteristics and reference set observations on the k-NN 
estimated wood volume;

• multisource and multitemporal data fusion;
• comparison of three nonparametric estimators: 

k-NN, general regression neural network (GRNN) and re-
gression tree (RT).

Material and Methods

Study site
Kurzeme planning region is located in the western 

part of Latvia between 56° and 58° North and 21° and 
23.5° East with a total area of 13,607 km2 (Figure 1). The 
climate in Kurzeme is usual to the temperate climate zone 
with substantial maritime features due to the vicinity of 
the Baltic Sea (Rutkis 1960). The frequent cloud cover 
limits the availability of multispectral satellite images. 
The mean cover of low clouds is smaller in northern and 
western parts of Kurzeme (Avotniece et al. 2015). If in-
formation on a specific period of time is required, then 
it could be necessary to use satellite images of different 
seasons or years to cover the whole region. Approxi-
mately half of Kurzeme area is covered by forests. In the 
landscape of Kurzeme forest patches form heterogeneous 
mosaics with agricultural land, waters and urban areas 
(Saliņš 2002). Latvia is situated in the hemiboreal forest 
zone where evergreen coniferous tree species and broad-
leaved deciduous tree species can be found in the land-
scape (Znotiņa 2002).

Coniferous trees are represented by four spe-
cies and deciduous trees by 17 tree species in Kurzeme 
(Bušs 1987). While the coniferous trees often form pure 
stands, the deciduous trees are found almost exclusively 
in mixed stands. The dominant coniferous tree species in 
Kurzeme region are due to climatic and economic factors 
Scots pine (43.1% of the total area, Pinus sylvestris L.) 
and Norway spruce (15.3%, Picea abies (L.) Karst.). The 
most common deciduous tree species are birch (21.5%, 
Betula pendula Roth and Betula pubescens Ehrh.), black 
alder (1.7%, Alnus glutinosa (L.) Gaertn.), aspen (2.0%, 
Populus tremula L.) and gray alder (3.1%, Alnus incana 
(L.) Moench). The percentage shows the proportion of the 
area covered by specific dominant tree species as recorded 
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in the forest inventory data base. In contrast to the small 
number of tree species, the forest structure in Kurzeme is 
diverse. Tree species composition, stand density, age and 
volume vary substantially even within small geographical 
regions. The mean forest stand size is approximately 1.3 
hectares. Our smaller and detailed study site where lidar 
data were acquired is located in Slitere National Park in 
the northern part of Kurzeme. Slitere National Park was 
founded in 1921 and is one of the most important Na-
tura 2000 sites in Latvia. Tree species composition in this 
study site is typical of forests in Kurzeme, but the forests 
are natural and less fragmented with limited management 
activities performed.

Data sets and data pre-processing
In this paper we use the terminology proposed by 

McRoberts (2012). The feature variables for wood vol-
ume estimation experiments were extracted from four 
ancillary data sets: 1) Landsat-5 Thematic Mapper (TM) 
and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 
images; 2) SPOT-4 High Resolution Visible and Infrared 
(HRVIR) images; 3) ALOS Phased Array type L-band 
Synthetic Aperture Radar (PALSAR) data; and 4) airborne 
discrete return laser scanner data. The ancillary data (im-
age data) were obtained for the whole area of Kurzeme, 
except the airborne lidar dataset which was available only 
for 63.3 km2 in Slitere National Park. The list of all em-
ployed satellite images and derived feature variables with 
their short labels is given in Table 1. If a specific band of 
a multispectral image is discussed in the text, then bX, 
where X is band number, is added to the image label: e.g. 
the first band from Landsat-5 TM image from 28.06.2010 
will be referred to as imL14b1.

SPOT-4 images were from different seasons: leaves-
on autumn (imS11), leaves-off spring (imS12) and winter 
(imS1, imS2, imS4-imS10) to investigate temporal ef-
fects on the wood volume estimation. The SPOT-4 winter 

time image set covered the whole Kurzeme area. Satellite 
images from the time of the year when snow covers the 
ground surface have been used by Peterson et al. (2004) 
for forest mapping and the fraction of shaded bright snow 
in a forest is probably correlated with wood volume and 
biomass of the forest (Leboeuf et al. 2007). The SPOT-
4 images (imS1-imS12) were projected into the Latvian 
state coordinate system LKS92 and ortorectified using 
ground control points (40 points per scene) from a topo-
graphic map (scale 1:50000) with the average root mean 
square error of 20 m. The pixel size was set to 20 m. The 
second order polynomial was used to calculate rectified 
coordinates and nearest neighbour resampling method 
was used for pixel values.

The Landsat images (imL13-imL18) were selected 
and downloaded from the USGS image archive to obtain 
the maximum continuous cover over the Kurzeme test 
site. Some of the images had regions with haze and clouds 
and the Landsat-7 ETM+ image (imL13) had missing 
scanlines due to operating in the SLC-off mode since the 
year 2003. All the Landsat images (imL13-imL18) were 
from the phenology situation when trees in Kurzeme re-
gion have full foliage. Two of the Landsat images (imL17 
and imL18), however, were from the beginning of Sep-
tember when the illumination conditions are not the best 
due to the low Solar angle at the time of image acquisi-
tion. The Landsat images were projected into the LKS92 
coordinate system by using nearest neighbour sampling 
and 25 m pixels. The areas with clouds and cloud shad-
ows were digitized manually and assigned a missing data 
value. Since spectral bands in the Landsat images cover 
slightly different areas, additional masks for each image 
were created to determine the common area. Only the 
multi-spectral channels from the optical spectral range 
(400–2500 nm) were used from the Landsat images.

If images from different dates are used for map con-
struction with a k-NN estimator, then it seems feasible 
to join the individual images as a mosaic. Hence, some 
normalization may be required, since spectral radiance of 
the images is influenced by the differences in illumina-
tion, by the atmospheric conditions, sensor decay and also 
by the actual natural changes of forests. Olsson (1993) 
proposed a simple, regression-based method for relative 
calibration of satellite images using closed canopy conif-
erous stands older than 40 years as the stable reflectance 
objects. Koukal et al. (2007) showed that if the phenologi-
cal differences are not large then regression models can be 
applied to create image mosaics to increase the number of 
sample plots per image field for the k-NN. We tested the 
relative calibration of the Landsat images (imL13-imL18) 
using middle-aged coniferous stands and linear regres-
sion according to Olsson (1993) to create a single image 
for Kurzeme region. However, validation in the image 
overlap areas showed significant differences between the 

Figure 1. The study region is indicated by pattern. The triangle 
shows location of the special test site in Slitere National Park
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estimated radiance values, and therefore no radiometric 
calibration was applied to the images. On the other hand, 
the number of training samples in a reference set for each 
Landsat image was rather large, ranging between 2,879 
and 8,979 forest stands per image and the estimation of 
response variables was carried out using each individual 
scene separately.

The ALOS PALSAR data provides information in the 
L-band with a spatial resolution of 20 m. The radar data 
were ortorectified and resampled into the LKS92 coordi-
nate system. The ALOS PALSAR data were calibrated for 
antenna profile offset and finally HV polarization band 
sigma values were filtered with a 3x3 median filter. Sigma 
is a measure of the reflective strength of the radar target.

The airborne laser scanning (ALS) data for the spe-
cial study site in Slitere National Park was acquired with 
the ALTM Gemini scanner with the following parameters: 
the laser pulse repetition rate was 125 kHz, scan frequency 
50 Hz, scanning angle ±17 degrees and the average flight 
height 700 m resulting in the mean point density of 6.28 
points/m2. Lidar data processing was done in FUSION/
LDV environment (McGaughey 2014). A digital terrain 
model (DTM) was created after extracting points for the 
ground surface and a digital surface model (DSM) was 
created by filtering the highest points from the ALS data. 
Finally, a canopy height model (CHM) was obtained by 
subtracting the DTM from the DSM. The spatial resolu-
tion of the CHM was 1m. The following feature variables 
were calculated from the CHM for each forest stand (av-
eraged over each forest stand polygon): mean height, the 
70th percentile of pulse return height distribution, which 
had the strongest correlation with forest height, and cano-
py cover. Canopy cover was calculated as the proportion 
of canopy hits above the 1.5 m threshold.

A forest management inventory data base obtained 
from the JSC “Latvijas valsts meži” was used to select 
forest stands for k-NN experiments. The RFI database 
contained tree species composition data, site fertility 
class, forest age (A), wood volume in cubic meters per 
hectare (V), and other common inventory variables. First, 
a random subset consisting of 69,038 forest land records 
was selected from the RFI database as possible training 
and validation stands. The information in the records was 
collected from the year 2005 and onwards and the size of 
the forests was more than 2.1 ha. The records were ex-
clusively assigned to a training data set (reference set) or 
validation data set. Since the remote sensing data were 
from 2010–2012, all objects (forest stands) in the refer-
ence set and in the validation set were tested for 1) varia-
tion of the spectral radiance with their polygons and 2) 
deviation from forest age or wood volume to the radiance 
relationship. The radiance variation coefficient (Lvar) for 
each band of the Landsat images (imL13-imL18) within 
each forest stand polygon was calculated as the ratio be-

tween the standard deviation of the radiance and the mean 
radiance. If the Lvar of a forest stand was greater than the 
90th percentile of Lvar in the validation dataset or the train-
ing dataset, respectively, then the stand was excluded.

Next, to detect disturbed stands in the training or val-
idation dataset we searched outliers based on the relation-
ship between forest age or wood volume and forest stand 
spectral radiance (L). The relationships were fitted using 
the model (1) (Nilson and Peterson 1994) for each band of 
the images imL13-imL18 

L = a1 + (1 – a2 exp(a3x)), 		  (1)

where a1, a2 and a3 are the estimated parameters, exp 
is the exponent symbol and x stands for wood volume or 
stand age.

For forest age dependent spectral radiance regres-
sion model the L from each image band was calculated 
as the mean value of pixels within each forest stand poly-
gon. When the independent variable in the model (1) was 
forest age, then two model residual standard errors were 
used for outlier detection. The filter was not applied for 
the stands that were younger than five years due to the 
natural rapid spectral reflectance change in this particu-
lar period (Nilson and Peterson 1994). For wood volume 
dependent spectral radiance regression model the spectral 
radiance for each forest stand was extracted from the for-
est polygon centroid pixel, since our k-NN implementa-
tions were designed for small sample plots represented 
by their nearest pixel in raster images. Outlier detection 
in the wood volume-based radiance regression model (1) 
was based on the 2.5 model residual standard error rule. 
The filter was not applied to the stands that had a wood 
volume less than 20 m3/ha. After the filtering the valida-
tion dataset contained 18,195 stands and the training data-
set contained exclusively 18,816 stands.

Nonparametric estimation methods
Three of the most frequently employed choices for 

wood volume and biomass estimators are k-nearest neigh-
bours (k-NN), multiple regression analysis and neural 
networks (Lu 2006). The basic principle of k-NN is sim-
ple – it is a supervised classifier which compares the target 
pixel to be classified with all the sample pixels in the ref-
erence set and assigns a response variable value e.g. wood 
volume to the pixel in the target set by taking into account 
the field measurement values of k nearest reference obser-
vations according to the feature variables (Franco-Lopez 
et al. 2001, McRoberts 2012). Computational complexity 
is high in time and space, but the k-NN can handle nu-
meric response variables (e.g. wood volume) and discrete 
classes (e.g. tree species). Performance of the algorithm 
depends on the internal parameter k – the number of the 
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Table 1. The list of satellite images and other feature variables employed in the study. For the Landsat images the path and row 
according to the Worldwide Reference System is given. Abbreviations: hSun – solar elevation angle, Sazimuth – Sun azimuth, degrees; 
VNA – View nadir angle, degrees; ALS – airborne laser scanner

ASSESSMENT OF DIFFERENT ESTIMATION ALGORITHMS AND REMOTE SENSING  /.../ M. LANG ET AL.

Figure 2. Distribution of the reference set and validation set obser-
vations according to wood volume and main species (colours are 
available in the electronic version) 

Label Sensor Date Short description

imS1 SPOT-4 HRVIR2 28.02.2011 hSun =22.6, Sazimuth=162.4, VNA=+6.9

imS2 SPOT-4 HRVIR2 28.02.2011 hSun =23.6, Sazimuth=162.0, VNA=+6.9

imS3 SPOT-4 HRVIR1 02.07.2012 hSun =50.6, Sazimuth=139.0, VNA=-17.9

imS4 SPOT-4 HRVIR2 28.02.2011 hSun =23.4, Sazimuth=161.7, VNA=+6.9

imS5 SPOT-4 HRVIR2 28.02.2011 hSun =22.6, Sazimuth=161.4, VNA=+9.9

imS6 SPOT-4 HRVIR1 28.02.2011 hSun =22.6, Sazimuth=163.2, VNA=+9.9

imS7 SPOT-4 HRVIR1 28.02.2011 hSun =23.6, Sazimuth=162.9, VNA=+9.9

imS8 SPOT-4 HRVIR1 28.02.2011 hSun =23.4, Sazimuth=162.5, VNA=+9.9

imS9 SPOT-4 HRVIR2 17.02.2011 hSun =20.3, Sazimuth=165.6, VNA=+21.9

imS10 SPOT-4 HRVIR1 23.02.2011 hSun =21.9, Sazimuth=162.2, VNA=+9.3

imS11 SPOT-4 HRVIR1 30.09.2011 hSun =29.1, Sazimuth=161.5, VNA=-3.6

imS12 SPOT-4 HRVIR1 31.03.2011 hSun =35.5, Sazimuth=164.7, VNA=+17.5

imL13 Landsat-7 ETM+ 07.06.2011 hSun =53.7, Sazimuth= 155.7, path 188, row 020, SLC-off

imL14 Landsat-5 TM 28.06.2010 hSun =53.8, Sazimuth=152.7, path 188, row 020

imL15 Landsat-5 TM 29.06.2011 hSun =53.6, Sazimuth=152.1, path 190, row 020

imL16 Landsat-5 TM 18.08.2011 hSun =43.8, Sazimuth=155.6, path 188, row 020

imL17 Landsat-5 TM 07.09.2010 hSun =37.2, Sazimuth=159.9, path 189, row 020

imL18 Landsat-5 TM 07.09.2010 hSun =38.4, Sazimuth=158.7, path 189, row 021

imR19 ALOS PALSAR 28.06.2010 Incidence angle: 38.721 degrees

datLCH ALTM Gemini 24.08.2011 ALS-based canopy height model

datLMH ALTM Gemini 24.08.2011 ALS-based mean canopy height 

datL70 ALTM Gemini 24.08.2011 70th-percentile of ALS pulse return height distribution
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nearest neighbours employed. Most recent k-NN imple-
mentations use also optimization routines (McRoberts et 
al. 2015), but our implementations had just the basic func-
tionality described above.

The general regression neural network (GRNN) is a 
logical extension of k-NN and a type of radial basis neural 
network. The GRNN can be easily trained by setting the 
spread of radial basis functions which determine the im-
pact of sample points on the estimation according to their 
distance from the pixel to be classified (Specht 1991). The 
spread is the only internal parameter to be fitted for esti-
mation.

Multivariate regression aims to find relations be-
tween dependent (numeric forest inventory variables) and 
independent (remote sensing data values) variables. From 
the wide choice of regression techniques, regression trees 
(RT) were chosen. An RT predicts the response variable 
by following decisions in the tree from the root node to 
the leaf nodes (Moisen and Frescino 2002). The RT is bi-
nary, meaning that each step in a prediction checks the 
value of one predictor. The algorithm is very fast, but the 
main drawback is the limited number of estimated values 
compared to k-NN and GRNN which theoretically allow 
estimating a variable in a continuous interval of values. 
Similarly to neural networks, the RT can be overfitted to 
training data resulting in weak performance on validation. 
Regression tree size refers to a number of decisions in-
cluded in the tree structure. More decision nodes in the 
regression tree can describe smaller variations in the data 
set, but there is a risk of overfitting. Pruning of the tree 
reduces the number of decision nodes and the overfitting 
risk retaining the basic relationships between variables in 
the data set. Hence, the most important internal parameter 
of the RT to be fitted is the pruning level, meaning the 
reduction in tree size and removal of leaves which cor-
respond to small variations in remote sensing data. We 
selected k-NN as the base algorithm in our case studies 
while the GRNN and RT were tested in some case studies 
for comparison with the k-NN.

All our implementations of the algorithms worked 
at pixel-level. For all the case studies except study No. 
5, centroid pixels of forest stands were selected to ob-
tain values from raster images for feature variables. For 
the fifth study stand-level mean values were used via a 
separate query module. The mean value of pixels from 
within each stand polygon was used for validation of the 
constructed wood volume maps. For the case studies 2, 3 
and 4 the k-NN implementation tknn from Tartu Observa-
tory (T. Lükk, personal contacts) was used. For the other 
case studies the programs written in Ventspils University 
College were used (including the k-NN implementation 
vknn). Both k-NN implementations are based on Franco-
Lopez et al. (2001) using the Euclidean distance and they 
differed only by the t-parameter value (see Eq. 1 in Fran-
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co-Lopez et al. (2001)). The t=2 was used in tknn and t=1 
was used in vknn. We compared the two implementations 
and the difference in the overall RMSE of the estimated 
wood volume was marginal.

Methodology of validation
The accuracy assessment of the estimated wood vol-

ume V was carried out on the validation data set using the 
root mean square error (RMSE): 

                                
                                         

where yi is the observed wood volume, yi is the esti-
mated wood volume and n is the number of observations.

The mean error of estimate (MEE) was calculated as:

                              
                                         

The equations (2) and (3) were also used to compare 
the wood volume estimates extracted for forest stands lo-
cated in overlapping areas of the Landsat images.

Case study 1: Wood volume estimation with k-NN 
and SPOT-4 HRVIR images

Feature variables for wood volume estimation were 
extracted from the image set imS. All of the SPOT-4 HR-
VIR bands were employed with equal weights in the esti-
mation procedure. The number of the nearest neighbours 
k=21 to achieve the highest accuracy was evaluated in case 
study 6. The training accuracy at pixel-level was assessed 
by using the RMSE of leave-one-out cross-validation for 
each image to investigate the impact of image acquisition 
season and the reference set randomness. The estimation 
accuracy was calculated by using validation stands.

Case study 2: Wood volume estimation with k-NN, 
Landsat-5 TM and Landsat-7 ETM+ images

Feature variables for wood volume estimation were 
extracted from the image set imL. The blue band (TM 
b1, ETM+ b1) and the second shortwave infrared band 
(SWIR: TM b7, ETM+ b7) were excluded due to strong 
atmospheric path radiance in the blue band and strong 
correlation between the two SWIR bands of the scanners. 
The bands b2, b3, b4, b5 of the images in the imL set were 
used with equal weights. The number of neighbours k=5 
was estimated from Figure 2 in the paper by McRoberts 
(2012) as a compromise. The k=5 was also used by Faza-
kas et al (1999) who comment that using k>5–10 does not 
substantially increase estimation accuracy but introduces 
artificially improved correlation between the estimated 
values of response variables. The chosen k was much 
smaller than in case study 1, but using a sufficiently small 

                                     ,		  (2) 

                               .			   (3) 
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number of reference observations in the k-NN preserves 
more natural variation which may be beneficial for stand-
level estimates at extreme values of response variables. 
The estimation accuracy was calculated by using valida-
tion stands.

Case study 3: Impact of randomness in the refer-
ence set sample on the k-NN volume estimations

Case study 3 used the same feature variables and al-
gorithms as case study 2. For each image in the imL set, the 
k-NN was run ten times by using 33% of randomly drawn 
reference observations from the image area. The number 
of selected reference observations ranged between 809 
and 2,985 for individual images, but did not vary much for 
any particular image. For each forest stand in the valida-
tion dataset the mean estimated wood volume was calcu-
lated after each k-NN run using the pixels located within 
the stand border. The dependence of the standard error of 
the ten estimates on the mean estimated value and on the 
V from forest inventory data was analysed.

Case study 4: Assessment of the influence of im-
age and training plot combination on the k-NN volume 
estimations

Since the Landsat images in the imL set were from 
different dates and years (Table 1) we tested relative radio-

metric calibration first, but the results were unsatisfactory. 
An assumption was made that the number of training sam-
ples in the reference set was sufficiently large to describe 
the variation for the k-NN experiments. The combined ef-
fect of the image and the available reference set samples 
was assessed by comparing the wood volume estimates of 
the validation stands in the image overlap areas.

Case study 5: Selection of multisource data vari-
ables in Slitere National Park

Figure 3 shows some examples of the relationships 
between V and remote sensing data-based feature vari-
ables (average value per stand polygon). The relationships 
for multispectral satellite images are nonlinear and for a 
standing wood volume of larger than 110 m3/ha multi-
spectral feature variables tend to saturate but the variance 
remains high. The canopy height estimate from the ALS 
did not have such a saturating relationship with V, and 
ALOS PALSAR radar data are of interest because the data 
acquisition is almost independent from clouds.

The aim of this test was to find an optimal multi-
source/multitemporal set of feature variables for the 
standing wood volume estimation. A total of 1,620 stands 
were used in this case study. The experiment of data fu-
sion was performed as follows. For each forest stand, fea-
ture variables were obtained as the mean value of pixels 
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Figure 3. Relationships between standing wood volume and a) imS6b1, b) imL14b2, c) imR19, d) the 70th percentile of the ALS 
height over ground. The feature variables are described in Table 1.
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Table 2. The RMSE and MEE of wood volume (V, m3/ha) es-
timates using feature variables from multi-spectral images. For 
SPOT-4 images (imS) the results are based on the reference set 
pixels using leave-one out cross-validation. For the Landsat 
images (imL) the results are based on validation stands. The 
image descriptions are in Table 1

Image Reference 
observations

MEE 
(m3/ha)

RMSE 
(m3/ha)

imS1 2,219 -4.8 94

imS2 4,382 -1.3 91

imS3 5,391 -1.4 89

imS4 2,562 -10.6 103

imS5 2,377 -2.3 104

imS6 494 0.9 92

imS7 5,666 7.0 96

imS8 3,621 -4.5 87

imS9 3,621 0.6 106

imS10 487 3.9 129

imS11 1,230 -2.4 113

imL13 7,434 -5.9 74

imL14 8,979 -5.8 72

imL15 5,639 -5.1 75

imL16 2,828 -1.7 77

imL17 6,518 -0.7 80

imL18 4,288 0.0 81

tion of V the estimation error is cancelled out. Some of 
the validation stands were located in overlapping areas of 
the SPOT images. The difference in the estimated wood 
volume for the stands showed a mean RMSE=30 m3/ha 
when the estimates from different images were compared 
to each other.

Case study 2: Wood volume estimation with k-NN, 
Landsat-5 TM and Landsat-7 ETM+ images

The mean wood volume based on the Landsat images 
was marginally (5 m3/ha) underestimated when the im-
ages from the first half of the growing season were used. 
The RMSE ranged from 72 m3/ha to 81 m3/ha (Table 2). 
An interesting phenomenon was that the RMSE was 
smaller for the images from the beginning or middle of 
the growing season and increased towards the end of the 
vegetation period. This can be related to the overall scene 
illumination and the range of pixel values in the images. 
Surprisingly, the RMSE of the wood volume estimations 
based on the Landsat images were less compared to the 
estimates based on the mid-growing season SPOT-4 HR-
VIR image (imS3). The reason for the lower accuracy of V 
estimates can be related to the smaller instantaneous field 

within stands from each layer in the imS6, imL14, imR19, 
datLCH, datLMH and datL70 data sets. All the feature 
variables were standardized by using z-scores. Then the 
k-NN was run for all possible combinations of the vari-
ables (a total of 16,383 different feature variable combi-
nations) and the RMSE of leave-one-out cross-validation 
was calculated.

Case study 6: Comparison of estimators
The case study was based on the image imS8. Three 

different estimation methods (k-NN, GRNN, RT) were 
applied in the test with varying internal parameter values 
(k for k-NN, pruning level for RT and the spread of basis 
function for the GRNN) to perform the internal parameter 
optimization. The internal parameter value resulting in 
the smallest RMSE was selected as the optimal value. For 
the study, 3,705 centroid pixels of the forest stand poly-
gons were available. One thousand pixels were randomly 
drawn as a training set, and the rest (2,705) were used as 
a validation set. The variability in the accuracy depending 
on the training set selection was checked by selecting 100 
different training (1,000 pixels) and validation sets (2,705 
pixels) and evaluating the RMSE.

Results

Case study 1: Wood volume estimation with k-NN 
and SPOT-4 HRVIR images

Table 2 summarizes the the leave-one-out cross-
validation (LOOC) statistics and the results show some 
dependence of the estimation accuracy on the individual 
images, but there was no evident impact of the image ac-
quisition season. The LOOC RMSE values are slightly 
more optimistic than the separate validation set based 
RMSE. A similar conclusion about the LOOC was made 
by Tomppo et al. (2009). Wood volume was estimated 
with RMSE=115 m3/ha according to validation of the 
independent set of forest stands when feature variables 
from the SPOT-4 HRVIR image set imS were used in the 
k-NN. When the difference between the estimated wood 
volume V and inventoried wood volume V was looked as 
a function of V, then there was an evident lack of fit of the 
estimates relative to the measured values. Wood volume 
in the youngest stands was estimated with a small posi-
tive error, however, with increase in V the overestimation 
rapidly increased reaching the maximum at about V = 100 
m3/ha. After the maximum point of overestimation the dif-
ference between the V and V started to decrease almost 
linearly reaching the zero value at about the overall mean 
of V. With the further increase in V the V was always un-
derestimated. At V = 450 m3/ha, the underestimation was 
substantial. However, the overall mean wood volume es-
timate had only a marginal MEE, since with the aggrega-
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Case study 4: Assessment of the influence of im-
age and training plot combination on the k-NN volume 
estimations

The k-NN wood volume estimates were dependent 
on the individual Landsat images (imL image set). The 
comparison of the wood volume estimates in image over-
lap areas revealed notable discrepancies that were de-
pendent on the estimated value itself (Figure 4). In some 
cases the estimates were more scattered but unbiased and 
in some cases the scatter was small, but the estimates were 
biased. The RMSE of the stand-level wood volume esti-
mates in the image overlap areas ranged between 17 m3/
ha and 42 m3/ha, and MEE ranged from -26 m3/ha to 21 
m3/ha. The wood volume estimates were larger when fea-
ture variables from late summer and early autumn images 
were used (Figure 4a–e, Table 1). There was an interesting 
pair of Landsat-5 TM images (imL17 and imL18) taken 
from the same orbit on the same day. The wood volume of 
stands was, on average, overestimated by 17 m3/ha when 
reference observations from the southern image (imL18) 
were used (Figure 4c) compared to the northern image 
(imL17). This indicates clearly that there is a combined 
influence of reference set and properties of the particular 
image on the estimates of response variables in k-NN.

Case study 5: Selection of multisource data vari-
ables in Slitere National Park

In this test one feature set included ALS-based fea-
ture variables in addition to spectral and radar data. The 
inclusion of ALS data increased the V estimation accu-
racy by 10 m3/ha while radar data-based feature variables 
showed no clear influence (Table 3). Starting with the 
two most informative feature variables (the 70th percen-
tile of the ALS point cloud height distribution and NIR 
band from the Landsat image) the RMSE of the estimated 
wood volume was 63.2 m3/ha. By adding more feature 
variables, the RMSE first decreased and then started to 
increase again. Similar observations were made on the 
feature set where ALS data was excluded. The minimum 
RMSE was achieved by five or six feature variables that 
included the 70th percentile of the ALS point cloud height 
distribution, the green band from the Landsat and SPOT 
image, and NIR and SWIR bands from the Landsat image. 
However, the difference in the RMSE was small when the 
number of feature variables changed. Increasing the num-
ber of features over 6 also led to an increase in the RMSE 
due to the “curse of dimensionality” (Duda 2012). The 
most useful spectral bands for volume estimation were 
green (both winter and summer – imS6b1, imL14b2), 
near infrared and mid-infrared bands (imS6b4, imL14b4, 
imL14b7).

of view of the HRVIR sensor compared to the TM and 
ETM+ sensors, since spectral signatures for the reference 
set in the k-NN were obtained from the centroid pixel of 
each stand. As a contrast to sample plot-based reference 
observations, the measured wood volume V for the refer-
ence set observations was obtained from the RFI database 
and was the mean value for the whole stand area. Both of 
the used k-NN implementations were developed for sam-
ple plot-based reference observations and for each obser-
vation the closest pixel from the maps of feature variables 
is attached. In this study, however, the response variables 
were obtained as forest stand-level estimates and feature 
variable data were extracted from the stand polygon cen-
troid pixel. For an experiment we replaced the original 
centroid pixel data in the images imL13, imL14 and iml17 
with stand mean values and ran the k-NN again to predict 
V. The constructed maps were visually slightly different 
from centroid pixel-based results. However, based on the 
validation set, the relationship between the two estimates 
was linear and there was hardly any difference in the lack 
of fit of the estimated wood volume between the two 
methods used to calculate the feature variable values.

Case study 3: Impact of randomness in the refer-
ence set sample on the k-NN volume estimations

The standard error of the estimated stand-level wood 
volume was calculated from ten reference set subsample-
based k-NN estimates and it was usually less than 4 m3/ha 
and only in some younger stands reached 8 m3/ha. This 
indicates that the number of observations in the reference 
sets was sufficient. The results from the training plot sub-
sampling test prove also that the detection of disturbed 
stands in the reference set was reliable. There was a no-
table dependence of the standard error on the estimated 
wood volume V and the inventoried wood volume V. The 
standard error started to increase from almost zero value 
with V, then reached its maximum at about V = 100 m3/ha 
and then started to decrease again. However, the ratio of 
the standard error and V was the largest at small wood vol-
umes (4–10%) and constantly decreased with an increase 
in V. Similar results were obtained with the standard error 
relative to the inventoried wood volume V but the scatter 
was substantially larger and in young stands the relative 
error was sometimes close to 30% of the measured value. 
This indicates that the estimated values are rather stable 
when the number of reference observations for a Landsat 
TM image is large (the smallest sample in this study was 
809 stands). However, the estimated wood volume may 
have relatively large random errors compared to the mea-
sured wood volume at stand-level in younger than middle-
aged forests.
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Table 3. Search for optimal feature sets for the wood volume (V, m3/ha) estimation. Feature variable names are composed from the 
data set label (Table 1) and specific variable (e.g. band)

No. of 
features Feature sets with ALS RMSE 

(m3/ha) Feature sets without ALS RMSE 
(m3/ha)

2 datL70, imL14b4 63.20 imS6b3, imL14b2 77.37

3 datL70, imL14b4, imLb7 60.76 imS6b1, imS6b4, imL14b4 73.81

4 datL70, imL14b2, imL14b4, imL14b7 60.24 imS6b1, imS6b4, imL14b2, imL14b4 71.51

5 datL70, imS6b1, imL14b2, imL14b4, imL14b7 59.97 imS6b1, imS6b4, imL14b2, imL14b4, imL14b7 69.34

6 datL70, imS6b3, imS6b4, imL14b2, imL14b4, imL14b7 59.97 imS6b1, imS6b2, imS6b4, imL14b2, imL14b4, 
imL14b7 69.15

7 datL70, imS6b1, imS6b3, imS6b4, imL14b2, imL14b4, 
imL14b7 60.01 imS6b1, imS6b3, imS6b4, imL14b2, imL14b4, 

imL14b5, imL14b7 69.49

8 datL70, imS6b1, imS6b3, imS6b4, imL14b2, imL14b4, 
imL14b3, imL14b7 60.01 imS6b1, imS6b2, imS6b4, imL14b2, imL14b3, 

imL14b4, imL14b5, imL14b7 69.63

9 datL70, imS6b1, imS6b2, imS6b3, imS6b4, imL14b2, 
imL14b3, imL14b4, imL14b7 60.09 imS6b1, imS6b2, imS6b3, imS6b4, imL14b2, 

imL14b3, imL14b4, imL14b5, imL14b7 69.89

10 datL70, imS6b1, imS6b2, imS6b3, imS6b4, 
imL14b2, imL14b3, imL14b4, imL14b5, imL14b7 60.18 imR19, imS6b1, imS6b2, imS6b3, imS6b4, 

imL14b2, imL14b3, imL14b4, imL14b5, imL14b7 70.46

11 imR19, datLCH, datLMH, datL70, imS6b1, imS6b4, 
imL14b2, imL14b3, imL14b4, imL14b5, imL14b7 60.39

imR19, imS6b1, imS6b2, imS6b3, imS6b4, 
imL14b1, imL14b2, imL14b3, imL14b4, 
imL14b5, imL14b7

70.73

12
imR19, datLMH, datL70, imS6b1, imS6b2, imS6b3, 
imS6b4, imL14b2, imL14b3, imL14b4, imL14b5, 
imL14b7

60.50

13
imR19, datLCH, datLMH, datL70, imS6b1, imS6b2, 
imS6b3, imS6b4, imL14b2, imL14b3, imL14b4, 
imL14b5, imL14b7

60.65

>14 All features 61.16

Figure 4. The k-NN estimated wood volume of validation set forest stands located in the overlapping areas of the Landsat images. 
The images are described in Table 1
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Case study 6: Comparison of estimators
The results of the estimator comparison are shown 

in Table 4 and the lack of fit for the k-NN and GRNN is 
shown in Figure 5. In the presence of high variance and 
nonlinear asymptotically saturating relationships between 
wood volume and spectral feature variables, all methods 
performed similarly with differences in accuracy of ap-
proximately 2% (for the k-NN and GRNN). The compu-
tational time can be reduced by choosing the GRNN or 
RT instead of the k-NN. Since the computational time 
depends on implementation and hardware properties, it is 
included only as additional information. However, when 
an estimator has to be optimized using e.g. genetic algo-
rithms or bootstrapping for a large reference set the com-
putational speed is important.

Discussion and Conclusions

There are few studies that incorporate stand-wise 
forest management inventory data for a regional wall-
to-wall estimation of forest structure variables using 

k-NN or machine learning algorithms (Holmgren et al. 
2000, Mäkela and Pekkarinen 2004, Maltamo et al. 2006, 
McRoberts 2008, Tamm and Remm 2009, Lang et al. 
2014). In fact, sample plot data from the strategic Na-
tional Forest Inventory (NFI) are preferred due to instru-
mental measurements and high accuracy of the estimated 
plot-level data. The RFI data, on the other hand, can be 
have systematic errors, may have large random errors 
and the records are updated at an interval of ten or more 
years. The update interval of NFI data is usually five 
years (Tomppo et. al. 2010). However, the advantages of 
RFI data over NFI data include much better spatial cover-
age and an option to have more stable signatures when 
averaging the pixel values under the forest stand polygon. 
An NFI sample plot with a radius of 7 m to 10 m covers 
approximately one or less than one pixel in a medium 
spatial resolution satellite image. Errors occur in the NFI 
plot location coordinates and there is an inevitable up to 
half pixel location error in image data due to the gridding 
process (Liang 2004) during image construction. Hence, 
a lot of randomness exists in the relationships between 
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Table 4. Comparison of wood volume estimation methods: the k-NN, RT and GRNN

* k-NN leave-one-out cross-validation (LOOC) statistics are not fully equivalent to the training set evaluation for the RT and GRNN.

Property or statistic
Algorithm

k-NN RT GRNN

Internal parameters Number of nearest 
neighbours k=21

LOOC based best pruning level: 125
Number of responses: 5

Spread of radial basis 
function: 2

Best RMSE achieved for initial test set 79.8 77.7 77.9

RMSE for initial training set 83.8* (LOOC) 74.3 62.3

RMSE variability 
(100 training and test sets)

max(RMSE)=83 
min(RMSE)=80 
std(RMSE)=0.9
mean(RMSE)=81.4

max(RMSE)=80
min(RMSE)=77
std(RMSE)=1.1
mean(RMSE)=79.2

max(RMSE)=81
min(RMSE)=76
std(RMSE)=0.9
mean(RMSE)=78.3

Computational time for test set estimation 6.60 s training 0.08 s,
estimation 0.0085 s

training 0.048 s,
estimation 0.4267 s

Figure 5. The lack of fit of the estimated standing wood volume in case of a) k-NN and b) GRNN
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NFI variables and remote sensing variables. On the other 
hand, the estimates of feature variables calculated using 
RFI stand polygons can have large variance for several 
reasons and outliers have to be removed before using the 
data with k-NN. We used the relationships between spec-
tral radiance and stand age or wood volume to clean the 
reference set and validation set for outliers. The procedure 
was successful as indicated by the RMSE of estimates 
which was 36...40% of the measured mean value when 
using the reference variables extracted from the Landsat 
images. The results are well comparable to Holmgren et 
al. (2000) or Mäkela and Pekkarinen (2004) who carried 
experiments out in much simpler boreal forests and in a 
smaller study area.

In forest management the planning of thinnings and 
other operations requires stand-level data and average sta-
tistics for a larger area i.e. a region are not so much of in-
terest. When k-NN based wood volume estimates are ag-
gregated over a larger area (e.g. 100 ha) then the mean val-
ues have a smaller relative error (Fazakas et al 1999), but 
for an individual stand the estimation error may be large. 
As found earlier by other authors (Fazakas et al 1999, 
Holmgren et al. 2000) there was a characteristic lack of 
fit in the k-NN estimated wood volume values also in our 
results, expressed by the overestimation of small values, 
almost correct estimates for the stands with the mean V 
and underestimation for the stands which had a larger than 
mean volume of wood. Gilichinsky et al. (2012) propose 
a procedure based on the histogram matching of k-NN 
wood volume estimates with regional statistics, however, 
it is not known how such general adjustments are appli-
cable, if e.g. species composition is to be estimated at the 
same time (Lang et al. 2014). The reasons for the lack of 
fit are probably related to nonlinearities between response 
and feature variables, noise in the reference data set and 
feature variable redundancy. The feature variable redun-
dancy effect on the wood volume estimates was found 
also in our feature variable selection experiment in the 
special study site in Slitere National Park. Different opti-
mization routines are proposed to select informative fea-
ture variables and sample plots (McRoberts et al. 2015) 
and our experiments confirmed that the k-NN or GRNN 
implementations without optimization are sensitive to the 
nonlinear relationship, noise and the variable redundancy. 
The ALS data-based feature variables were superior to 
the spectral data and radar data for wood volume estima-
tion. Although the ALS data provided highest accuracy, 
the employment of multispectral satellite images is still 
of interest to ensure regional coverage with a short update 
interval at lower financial expenses since free public ac-
cess was provided to medium spatial resolution Landsat 
and Sentinel data.

When sample plots are used to create a reference 
dataset for the k-NN, higher spatial resolution of feature 
images is preferred. However, the instantaneous field of 
view of scanners is inversely related to the swath of the 
image and individual high spatial resolution images cover 
a smaller area and more images are required to cover a 
certain region. This decreases the number of reference ob-
servations per image and requires the use of images from 
different growing seasons, view nadir angles, atmospheric 
conditions or sensors. We tested the impact of the refer-
ence set randomness effect and the combined effect of the 
reference set and feature variables extracted from differ-
ent images on the k-NN estimated wood volume. Differ-
ent samples of reference observations may be available for 
multitemporal multispectral satellite images due to clouds 
and cloud shadows or sensor malfunctioning. Our case 
studies indicated that the estimation accuracy depends on 
a particular image, but the randomness in the reference 
set does not impact accuracy substantially. While the ref-
erence observation randomness caused a marginal 4 m3/
ha standard error of the estimated values, the standard er-
ror was up to 30% when viewed relative to the measured 
wood volumes particularly in younger stands. So, the ran-
domness of the reference sample is not a major issue if the 
number of reference observations is large. However, even 
a large number of reference observations does not remove 
the lack of fit of estimates occurring near to the minimum 
and maximum of the measured wood volume.

The impact of the image acquisition season was de-
tected in the Landsat image set where higher accuracy was 
achieved with images from early summer when the scene 
is better illuminated. The estimations based on the SPOT 
HRVIR images were highly dependent on the specific im-
age. Our hypothesis that images from late winter when 
the ground is covered with snow are useful for wood vol-
ume estimation in Kurzeme region was partially proven. 
The estimates had a bigger RMSE compared to the mid-
growing season Landsat images. The reasons may be re-
lated to the 8-bit radiometric resolution of SPOT HRVIR 
data and possible contamination of the winter images by 
cirrus clouds which are hard to detect and possible snow 
on branches. However, new sensors e.g. the Operational 
Land Imager on-board Landsat-8 have special bands for 
detecting cirrus clouds and atmospheric haze. 

We tested different k-NN implementations and car-
ried out also tests with the GRNN and RT. All the meth-
ods performed similarly due to complex relationships be-
tween forest inventory data and remote sensing data. We 
found that the computational time can be reduced by us-
ing the GRNN, however, future work is required to com-
pare different implementations of the k-NN, options for 
optimization to decrease the lack of fit, and to investigate 
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the impact of the algorithm structure on the estimation of 
forest structure variables.

Finally, it can be concluded that multispectral satel-
lite data similar to Landsat-5 TM or Landsat-7 ETM+ im-
ages can be well used for regular regional wood volume 
estimations. Even with the relatively high RMSE these 
estimates complete the conventional forest management 
inventory with additional information.
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