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Introduction

Forest ecosystems consist of predictors and the re-
ceptor. The classification of interacting predictors and re-
ceptor deviations may suggest trend of forest ecosystem 
state change (Noble et al. 2004). Abiotic predictors of 
growth environment and the receptor of vegetation define 
basic spatial relationships of terrestrial ecosystems (Keller 
et al. 1997). The receptor usually indicates the response 

A Static Model of Abiotic Predictors and Forest 
Ecosystem Receptor Designed Using Dimensionality 
Reduction and Regression Analysis
PAVEL SAMEC1,3*, PETRA RYCHTECKÁ2, PAVEL TUČEK1, JAN BOJKO3, 
MILOŠ ZAPLETAL4,5 AND PAVEL CUDLÍN6

1Department of Geoinformatics, Faculty of Science, Palacký University, 17. listopadu 50, CZ-771 46 Olomouc, 
Czech Republic (www.geoinformatics.upol.cz)
2Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, CZ-613 00 Brno, Czech Republic
3Forest Management Institute Brandýs nad Labem, Nábřežní 1326, CZ-250 01Brandýs nad Labem, Czech Republic
4Centre for Environment and Land Assessment – Ekotoxa, Otická 37, CZ-746 01Opava, Czech Republic
5Silesian University at Opava, Faculty of Philosophy and Science, Masarykova 37, CZ-746 01 Opava, 
Czech Republic
6Global Change Research Centre AS CR, v.v.i., Lipová 1789/9, CZ-370 05 České Budějovice, Czech Republic
*Corresponding author: Mr. Pavel Samec, Department of Geoinformatics, Faculty of Science, Palacký Univer-
sity Olomouc, 17. listopadu 50, Olomouc, CZ-771 46, E-mail: psamec@post.cz

Samec, P.*, Rychtecká, P., Tuček, P., Bojko, J., Zapletal, M. and Cudlín, P.  2016. A Static Model of Abiotic Predic-
tors and Forest Ecosystem Receptor Designed Using Dimensionality Reduction and Regression Analysis. Baltic Forestry 
22(2): 259-274.

Abstract

The closeness of dependence level between growth environment (abiotic predictors) and forest ecosystem (receptor) indicates 
accordance or discrepancy between site and forest state. Our forest ecosystem analysis was focused on static model approximation 
between abiotic predictors with the closest dependence and properties of the receptor at 1×1 km grid in the Czech Republic (Central 
Europe). The predictors have been selected from natural abiotic quantities sets of temperatures, precipitation, acid deposition, soil 
properties and relative site insolation. The receptor properties have been selected from remote sensing data, density and volume of 
above-ground biomass of forest stands according to the forest management plans, and from surface humus chemical properties. A 
selection of the most dependent quantities was made by combining factor analysis and cluster analysis. The static modelling of the 
dependences between selected predictors and receptor properties was conducted by canonical correlation analysis. Average tem-
perature, annual precipitation, total potential acid deposition, soil base saturation, CEC, total acid elements and site insolation index 
closely corresponded to NDVI and surface humus base saturation, Corg and acid elements content at 30% of the analysed grid of 
forest soils and it indicated forest state within the confidence interval at 69% of the forest soil grid (rCCA = 0.79; P < 0.00001). The 
forest ecosystem state that corresponds to the selected abiotic predictors was demonstrated in hilly altitudes. The tested procedure is 
inconvenient for forest state analysis in floodplains and moorlands. Based on approximation deviations, highland and mountain for-
ests were divided into areas with non-optimum or more optimum ecosystem state than as corresponds to the values of the predictors.

Keywords: forest state monitoring; EMEP-LRTAP; floodplain; mountain forests; canonical correlation analysis.

of the joint action of numerous predictors. When one 
of the forest state predictors appears to be dominant, its 
manifestations result from the participation of other fac-
tors that cannot be omitted (Flückiger et al. 1986). The 
ecosystem acidification due to industrial pollution of at-
mosphere changed the closeness of dependence between 
abiotic predictors and the receptor. Acid deposition high-
lighted sensitivity of forests towards freeze and drought 
(Chappelka and Freer-Smith 1995). On one hand, acid 
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deposition, freeze and drought are stressors, on the other 
hand, they are integral part of the vegetation growth en-
vironment. Its impact on ecosystems is not definite all the 
time, but it is differentiated. A spatial differentiation of the 
abiotic stressors is the basic assumption for forest abiotic 
vulnerability simulations (Zapletal 2006). Acid deposition 
and non-optimum growth environment expose forests to 
decline. Different reactions of acid substances in the at-
mosphere and in the soil hamper the modelling of their 
partial effect on the ecosystems (Erisman et al. 2005). 
The various effect of acid deposition on different forest 
stands and soils is indicated by critical levels and loads 
(CLL) (Gauger et al. 2002). The measurements of critical 
loads in forest ecosystems are carried out in small forest 
basins of EMEP-LRTAP systems. The different relations 
of predictors in forest ecosystems makes itself felt by di-
versification of the ecological response of forests to stress 
(Purdon et al. 2004). Extrapolation of CLL from small for-
est basins up to landscape ecosystem scales linearizes lo-
cal hot-spots and thereby decreases total heterogeneity of 
different forest ecosystem states (Smith and Fowler 2001).

The closeness of dependence between predictors and 
forest ecosystem receptor is a prerequisite for simula-
tions of forest response on growth environment change. 
The feasibility of these simulations is conditioned, on one 
hand, by choice of suitable spatial platform of the model-
ling, on the other hand, by suitable selection of interact-
ing forest ecosystem properties. The recent environmen-
tal change and commercial changes of forest tree-species 
composition most participate in change of European forest 
ecosystem functions (Lindner et al. 2010). The environ-
mental change more affects managed forests than natural 
forests and may positively influence forests predominant-
ly on unexposed nutrient-rich sites, while the predisposed 
forests are being affected negatively (Pietsch et al. 2014). 
The forest ecosystem functions are most influenced by 
environmental processes of climate change, increase of 
atmospherical contents of CO2 and O3 and by acidifica-
tion (Schröter et al. 2005). The increase of CO2 content, 
on one hand, stimulates bioproduction, on the other hand, 
it decreases plant tolerance on O3 deposition (Karnosky et 
al. 2005). The forest soil acidification causes both forest 
decline and decreased ability of the ecosystem adaptation 
on climate change due to fine root length increment and 
forest biomass decrease (Cudlín et al. 2007). Neverthe-
less, joint action of nitrogen deposition and regional cli-
mate change will not afflict the Central-European forests 
unequivocally negative, but on different sites positively 
or negatively (Schröder et al. 2015).

The selection mode of variables in environmental 
modelling is either empirical, or statistical (Smith et al. 
2011). The ecological classifications of vegetation are 
usually focused on analyses of spatial relations among 
empirically selected basic predictors, which may not 

influence all states of the receptor at the same significa-
tion level, thereby empirical selection allows obtain only 
generalized relationships between predictors and receptor 
(Hruška et al. 2001). Average temperature, annual precipi-
tation, vegetation period, soil texture and topography are 
basic abiotic predictors of forest ecology (Barthlott et al. 
1999). Nutrient balances, species composition or biomass 
are basic properties of the ecosystem receptor (Gaston and 
Spicer 2004). Seasonal or substance constituent parts of 
the basic predictors are specific abiotic predictors, which 
may potentially influence health status of the receptor. Ba-
sic predictors influence the receptor by the same rate in 
the whole interval of natural values, but different values 
of specific predictors may also influence the receptor con-
tradictory (Smith and Herman 2004). The dynamics of the 
feedbacks between basic predictors and selected ecosys-
tem properties indicates community response to climatic 
change, ecological disturbance or pollution (Foley et al. 
1998). The empirical selection of variables is not com-
ponent of the modelling, but the model is designed after 
inductance of quantities, which roles are known experi-
mentally or theoretically. The statistical selection is based 
on indication of the most mutually correlating abiotic pre-
dictors and the receptor properties from the general matrix 
of many quantities. Statistical selection within suitable 
spatial environmental modelling platform allows to select 
predictors so that they can indicate specific receptor states 
(Csontos et al. 2007).

The aim of our study was distinction of close and de-
viated relations between the growth environment and for-
est ecosystem properties by multivariate selection and ca-
nonical correlation analysis. The equation f(Y) = f(X) ex-
presses the basic relationship between predictors (X) and 
the receptor (Y) in ecosystems. The static model of f(Y) = 
f(X) is compiled only from identically approximated items 
in contrast to the extrapolated CLL landscape models. The 
differences between basic and specific forest ecosystem 
state predictor models were investigated by the compari-
son of statistical approximation deviations (Noble et al. 
2004). Closely approximated statistical dependence be-
tween the selected predictors and the receptor properties 
may help in indication of equilibrium forest ecosystem 
state. Deviations between obtained and modelled receptor 
state may help to differentiate non-optimum or more op-
timum forest state than as corresponds to the correlation 
with predominant local growth conditions. The ecological 
disturbances are simultaneously manifested by a lower 
forest canopy and simplified ecosystem structure.  Low 
values of NDVI, stand density and volume and alterations 
in the supply and a chemism of surface humus are ba-
sic empirically classifiable indicators of the forest distur-
bances (Keller et al. 1997). In order to be able to use the 
basic indicators of ecosystem disturbances for obtaining 
their relations with the growth environment of the man-

A STATIC MODEL OF ABIOTIC PREDICTORS AND FOREST ECOSYSTEM RECEPTOR  /.../ P. SAMEC ET AL.



BALTIC FORESTRY

71

2016, Vol. 22, No. 2 (43) ISSN 2029-9230

261

aged forests, we designed large-scale spatial modelling 
platform. The planned management changes of the forest 
canopy after main felling according to the normal forest 
concept potentially cover <10% of the management-plan 
area territory. The main fellings regulated by the normal 
forest concept may not significantly affect total potential 
character of forest canopy  in the area, while unregulat-
ed fellings may (Smidt and Herman 2004, Gauger et al. 
2002, Smith and Fowler 2001). Low values of the for-
est disturbance indicators in large-areal scale of the sus-
tainably managed cultural landscape usually correspond 
only with abnormal forest dieback, where the unregulated 
fellings have been mainly concentrated (Pačes 1985). 
The permanent forest disturbances in Europe are namely 
concentrated along upper tree limit and on azonal sites, 
where marginal ecological gradients occur (Christensen 
et al. 2005). Among accidentally occurring natural dis-
turbances, abiotic harmful agents are those that affect the 
forest state the most. However, their scope in the cultural 
landscape is, to a certain extent, implicated by alterations 
in the forest species composition and by the use of inten-
sive silvicultural systems (Lochman et al. 2004). 

Material and Methods

The static modelling of dependences between abiotic 
predictors and the forest receptor was based on the sta-
tistical selection of the most mutually correlating quanti-
ties from the general matrix of variables and evaluation of 
their interrelationships (Borůvka et al. 2007). The mod-
elling was conducted by multivariate exploratory data 
analysis (MEDA), canonical correlation analysis (CCA) 
and linear regression (LR). The modelling platform was 
a grid of 1×1 km covering forest lands on the territory of 
the Czech Republic (CR). The statistical selection of the 
abiotic predictors and receptor properties from the general 
matrix was conducted by MEDA. For the exploratory data 
analysis, we used basic multivariate methods because they 
preserved informational value of the selected quantities for 
potential forest management needs (Modrzyński 2003). 
CCA was used to verify the closeness of the dependence 
between the selected predictors and receptor. LR allowed 
us to distinguish areas with a sufficient correlation of pre-
dictors and receptor properties from another areas (Fi
gure 1). The interpretation of the results was performed by 
discussion with regional studies on forest pollution load.

Input predictors and receptor quantities were collect-
ed according to the forest vulnerability classification con-
cept in the CR such a manner that their relationship could 
be expressed using the f(Y) = f(X) approximation (Hruška 
et al. 2001). The CR and the neighbouring regions of Ger-
many and southern Poland are the parts of Europe with 
the most seriously damaged environment by acid deposi-
tion (Akgöz et al. 1995). The comparison of differences 

between influences of forest ecosystem properties linear 
combinations and influences of seasonal values or com-
pounds of other ecosystem properties is a specific feature 
of the introduced static modelling. This comparison was 
conducted by division of the general matrix to submatri-
ces of cumulated and elementary forest ecosystem prop-
erties, which avoided unwanted auto-correlation between 
linear combinations of forest ecosystem specific proper-
ties and elementary specific ecosystem properties (Thalib 
et al. 1999). The predictors were defined as permanent site 
conditions that implicate production and natural forest 
composition (Purdon et al. 2004). The receptor was de-
fined based on forest vegetation biomass parameters and 
chemical properties of surface humus (Emmer et al. 2000). 
We processed all the input data in a form of medium-term 
averages. The time period included in the calculation of 
average values differed in individual quantities depending 
on the methodical seriousness of data collection. 

Modelling Platform
A regular square raster 1×1 km of a modelling plat-

form was situated created in the national uniform trigo-
nometric cadastral grid (Mervart and Cimbalnik 1997). 
The basic grid was created using 80,140 cells. The inves-
tigated cells with the actual forest representation ≥70% 
(16,266 cells; 20% of the total forest cover in the Czech 
Republic) were identified by the intersection with a vector 
model of the inventoried boundaries of forest and forest-
less land from the  Information Data Centre of the For-

Figure 1. The flow chart of the ecosystem statistical analysis 
based on exploratory data analysis (EDA) of the predictors and 
receptor and their comparisons by canonical correlation analy-
sis (CCA) and linear regression (LR)
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est Management Institute (FMI). Elevation median was 
identified for each investigated cell of the 1×1 km grid by 
intersection with DEM 25×25 m (Klimanek 2006).

Predictors
Basic climatic quantities, constituents of total poten-

tial acid deposition (TPAD), soil cation exchange capacity 
(CEC), base saturation (BS), aluminium – exchange base 
ratio (Bc/Al), organic carbon (Corg) and nitrogen (Nt), nu-
trient contents in the soil mantle (RxOy), content of soil 
clay (SC<2 µm) and orographic index of global radiation 
(OIGR) were all analyzed as predictors.

The normals (1971–2000) of average annual tem-
peratures (T) and annual precipitation (P) and their 
spring (March–May), summer (June–August), autumn 
(September–November), winter (December–February), 
vegetation amounts (April–September) and out-of-vege-
tation amounts were used as the basic climatic quantities 
(D’Arrigo et al. 2003). The layers of climatic quantities in 
the 1×1 km grid were obtained by geographic interpola-
tion from the dot data field of the data measured by the 
Czech Hydrometeorological Institute. IDW modification 
was used that includes the mean elevation of each cell as 
a co-variate in the calculation (Hadaš 2000). 

The initial models of annual TPAD in the 1×1 km grid 
were approximated using the EMEP-LRTAP procedures 
according to the basic formula (Erisman et al. 1989):

TPAD= 2.SOx+NOy+NHx ,

where SOx is the total (wet and dry) deposition of 
sulphuric compounds (SO2, SO4

2- in the mist and in the 
precipitation); NOy is the total deposition of oxidized ni-
trogen compounds (NOx, NO3

- in the mist and in the pre-
cipitation); NHx is the total deposition of reduced nitrogen 
compounds (NH3, NH4

+ in the mist and in the precipita-
tion) (Zapletal 2001, 2006). Medium-term average values 
of individual quantities in each cell were calculated from 
the models of 1998, 1999, 2000, 2003 and 2004.

The soil quantities were obtained from the diagnostic 
horizons in the 15,931 spot probes under the forestry ex-
plorations of the Department of Agriculture of the Czech 
Republic during 1979-2008. Location of these probes was 
characterized by elevation, management population of 
forest types (MP) and natural forest area ranges (NFAR) 
(Tomášková 2004). The spot probe elevation was iden-
tified from the 25×25 m  raster DEM, where each pixel 
contains statistical elevation obtained by transforming the 
information from 3D projection of 1 m contour lines of 
the Basic Base of Geographical Data of the Czech Repub-
lic. Normals (1979–2008) of the selected soil quantities 
of diagnostic horizons were calculated within each MP in 
individual NFARs. The information on prevailing NFAR 
and representation of MP were inserted into the selected 

cells of 1×1 km grid from the database of regional plans 
of forest development and weighted averages of the se-
lected quantities were calculated.

OIGR was used as an indicator of site insolation 
(Peedle et al. 2005). A set of SOLar POSition equations 
and intensities in  GRASS GIS were used to insert the 
morphometrical characteristics of Sun declination, orien-
tation, and position from  DEM into each grid cell. The 
r.sun module was used to perform consequent calculation 
of OIGR values (Neteler and Mitasova 2002). 

Receptor
The receptor properties were divided into quantities 

identified by the field survey and from the remote sensing. 
The quantities identified by field survey were expressed 
by standing volume per hectare (Vha), mean forest den-
sity (ρ) and chemical composition of the surface humus 
on a cell area of 1×1 km grid. The data on Vha and ρ were 
inserted into individual modelling grid cells through the 
sums and averages from the database of forest manage-
ment plans of the CR administered by FMI.

To characterize the receptor, we used CEC, BS, Corg, 
Nt and RxOy of the organic horizons (OH) from the forest 
land work databases of the Ministry of Agriculture of the 
CR. The transformation of the humus chemical properties 
normals (1979–2008) from the probe set to modelling grid 
was carried out as a weighted average calculation in each 
cell by MP simplification, total composition of broad-
leaved or conifer tree species and DEM. The information 
on MP was simplified to the sets of sites tending to a nor-
mal hydrologic model (IHN) and waterlogged sites (P). 
The prevailing composition of tree species was described 
as broad-leaved trees domination (≥ 50%) or conifer trees 
domination (> 50%) in the stand oldest storey from the 
FMI forest management plan database. The elevation was 
classified by altitudinal zones (Demek 1987).

Remote sensing data were represented by the gen-
eralized Landsat TM/ETM+ scenes from the period of 
1997–2008. Pre-processing of the layers of individual 
channels and indices (NDVI and NDMI) included mask-
ing of original images in the forests as per FMI resources, 
exclusion of the cloud cover cells, orthorectification, co-
ordinate system transformation, and resampling into the 
1×1 km grid. Generalization was performed as a calcu-
lation of the arithmetic average of individual quantities 
from 28.5×28.5 m cells corresponding to the forest acre-
age inside of each 1×1 km cell. The medium-term aver-
ages were calculated for each quantity from the data of 
individual years from 1997 to 2008 in 1×1 km grid. 

Static Modelling
The static modelling consisted of analysis of relations 

between basic predictors and receptor properties and anal-
ysis of relations between specific predictors and receptor 
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properties. Basic predictors and receptor properties have 
been selected at cumulated quantity submatrices. Specific 
predictors and receptor properties have been selected at 
elementary quantity submatrices. The cumulated quantity 
submatrices were formed from linear combinations of the 
elementary quantities. Individual quantities in all matrices 
were divided into natural sets by the physical and chemi-
cal essence, identification method, identical units, and 
standardization particulars (Smith et al. 2011). The sets 
were created for temperatures, precipitation, constituents 
of TPAD, soil nutrients, remote sensing quantities, forest 
mensuration field quantities, and surface humus nutrients. 

The submatrix of specific predictors contained 
seasonal normal temperatures, seasonal precipitation 
amounts, SOx, NHx, NOy, SC, BS, CEC, Bc/Al, Corg, Nt, 
oxides of individual soil macrobiogenous elements, and 
OIGR. The submatrix of specific receptor properties con-
tained reflectances of the basebands of the secondary ra-
diation of earth surface recorded by the Landsat carrier, 
NDVI and NDMI calculated from the basebands, chemi-
cal properties of the surface humus (BS, CEC, Bc/Al, 
Corg, Nt, RxOy), σ and Vha. In the cumulated quantity sub-
matrices, climatic quantities were grouped into T and P, 
acid atmospheric deposition constituents into TPAD, and 
oxides of individual soil macrobiogenous elements were 
summed to form a total content of acid elements (TAE = 
Al2O3 + Fe2O3) and a total content of alkaline elements 
(TBE = CaO + MgO + K2O). 

The MEDA was focused on the dimensionality re-
duction made separately amongst predictors and separate-
ly amongst the receptor properties. The presumptions for 
the f(Y) = f(X) equation approximation were verified by 
linear correlations of the selected quantities. The MEDA 
was carried out using the sequence of principal component 
analysis (PCA), factor analysis (FA), and cluster analysis 
(CLU). PCA was used to detect correlations in individual 
sets. Those quantities were excluded from individual sets 
of quantities with identical units that were identified by 
component weights in a joint quadrant without having 
one markedly big vector of the component weights. The 
number of necessary component weights was identified 
by using the Cattel’s index plot analysis from a number 
of influential factors that express >90 % of the total vari-
ability (Thalib et al. 1999).

The theoretical number of the included factors for de-
termining the optimum number of the component weights 
was used to define the conditions for FA application. The 
input variables were standardized using a power or logarith-
mic transformation (Box and Cox 1964). The logarithmic 
transformation was used in those cases, where the power 
transformation failed to provide the values with normal dis-
tribution. Application of FA was aimed at finding the com-
binations of potentially correlating quantities from various 
sets of predictors and the receptor (Pollice  2011). With FA, 

those quantities were excluded that failed to reach P > 0.60. 
The similarities of quantities from the identical set were 
eliminated in FA merely to the variable with the higher ab-
solute factor load value. The FA results were reviewed us-
ing the cluster analysis (CLU) with Euclidean metric. CLU 
allowed us to select from the identified combinations of po-
tentially correlating quantities only those, which had close 
relationships only with quantities from other sets. The se-
lection was carried out using the intersection of the FA and 
CLU results. CLU was carried out simultaneously by single 
linkage and using the Ward’s approach (Rand  1971). Si-
multaneous application of both CLU methods took place in 
order to verify the robustness of relationships between the 
selected variables. With FA, the similarities of the variables 
from identical set were eliminated merely to the variable 
with a higher absolute factor load value. Dimensionality re-
duction was obtained based on intersection of FA and CLU 
under the conditions below: (1) so that all the sets remain 
represented; (2) so that each of the data sets is represented 
by a minimum of one variable; (3) so that those variables 
from one set are preferred that are close to the variables of 
different sets; and (4) so that the relatively outlying vari-
ables are excluded.

CCA was used to determine the f(Y) = f(X) formula 
relationships between the most significantly correlating 
matrices of the selected predictors and receptor (Johnson 
and Altman 1999):

f(Y)= f(X)= 

The canonical correlation f(Y) = f(X) formula was 
simplified by LR and tested by regression diagnostics 
(Zar 1994). The confidence interval belts of the modelled 
values and input quantities of the linear regression were 
used for the CCA models classification. The classification 
provided a comparison between the variable approxima-
tion quality from the elementary quantity matrices and cu-
mulated quantities. The close approximation classification 
was made for the values in the model confidence interval. 
Classifications of the overestimated or underestimated ap-
proximation were done for the values outside of the model 
confidence interval as well as in the input data confidence 
interval. The other values were referred as outliers. 

Results 

Dimensionality Reduction
All the input data selections were typical of the im-

paired normality of distribution and residues, heterosce-
dasticity and residual correlation. Different input quantity 
intervals confirmed the need to carry out dimensionality 
reduction by a sequence of several MEDA techniques, on 
the one hand, while, on the other hand, they prefigured the 
need to perform selection of convenient quantities with 
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regard to the empirical approach. Autocorrelations, partly 
suppressed as early as individual specification variants 
were assembled, were manifested in the natural sets of in-
dividual quantities. Although PCA usually did indicated 
one significant component factor, the rest of the defined 
marginal factors were also manifested by non-parallel 
components of the compared quantities. The PCA applica-
tion did not perform sufficient dimensionality reduction. 
Out-of-vegetation period temperatures (Td), autumn tem-
peratures (Ta) and winter temperatures (Tw), out-of-vege-
tation period precipitation (Pd) and summer precipitation 
(Psu), NHx, Bc/Al, soil CaO and K2O, green radiation re-
flectance (G), red radiation reflectance (R) and NIR were 
excluded during the PCA of elementary sets. The predic-
tor dimensionality reduction using PCA excluded 9 vari-
ables (32%), 4 variables (18%) in the receptor properties.

The highest numbers of the separated influential scat-
ter factors with FA reached 5–7 and included 68–86% of 
variability. The required amount of included variability of 
90% was not reached, thus all the quantities with a load of 
P > 0.60 were taken into account. The most influential vari-
ability factors in the matrices of specified quantities mostly 
failed to cover even 40% of the data variability. More than 
50% of variability was included by consideration of merely 
two factors only in predictors. The dimensionality reduc-
tion affected 7 variables (37%) in the FA specific predic-

tors while reaching 9 variables (53%) in the FA receptor. 
FA of the basic predictors indicated inconvenient weights 
in one variable only (8%) while it included eight variables 
(53%) in the basic receptor properties (Figure 2). The simi-
larity in distribution of the quantity values from different 
sets was a feature of the forest ecosystem potentially mutu-
ally correlating properties identification and elimination of 
superfluous quantities from identical sets.

The items selected from the specific predictors were 
spring temperatures (Tsp), precipitation amounts for a veg-
etation period (Pv) and winter (Pw), SOx, while NOy + NHx 
were eliminated, soil BS and SC content, and OIGR (Fi
gure 3). The items selected from the basic predictors for 
modelling were T, P, TPAD, soil BS and CEC, content of 
TAE as well as OIGR (Table 1). Keeping the assumptions 
on the common action of numerous predictors from vari-
ous sets of different natures on the forest ecosystem state, 
the monitoring of TPAD is more beneficial than the actual 
monitoring of SOx. Both variables jointly indicated a syn-
ergy with soil BS and SC (Figures 2–3). The possible rela-
tionship between TPAD and soil Corg with Nt indicates that 
even the organic matter supply in forest soils was influ-
enced by the air pollution load on the medium-term basis.

The quantities of forest biomasses identified on the 
land (σ a Vha), NDMI as well as the surface humus proper-
ties of Bc/Al, CEC and Nt were excluded from the recep-

Figure 2. The single and Ward’s clustering of the elementary predictors and receptor matrices
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tor properties. NDVI was selected as the basic indicator 
of forest biomass. BS, TAE and Corg were selected from 
the surface humus properties. NDVI takes the values > 0 
in forested landscape and > 1 in richly structured forests. 

Linear Correlations 
Statistically significant level of correlation was docu-

mented amongst the selected abiotic predictors and recep-
tor properties. It was mainly MIR and BS surface humus 
that correlated with most of predictors, thereby supporting 
the optimization of the CCA model. The carbon content 
in surface humus correlated negatively with the clay con-
tent, cation exchange capacity, base saturation and TAE 
in the mineral soil horizons while the TAE surface humus 
correlated positively with the other soil properties. Simi-
larly, NDVI correlated positively with the soil clay con-
tent, base saturation, cation exchange capacity and TAE. In 
the proposed static models, the carbon content in surface 
humus correlated negatively with the distribution of av-
erage annual temperatures and marginally with TPAD, as 
well. Base saturation of the surface humus showed statis-
tically significant correlation with all predictors, but also 
with Corg and TAE of the surface humus and, marginally, 
also with the MgO content in  humus. BS of the surface 
humus correlated positively with the distribution of tem-
peratures, acid deposition and other soil properties, and it 

correlated negatively with precipitation. Positive correla-
tion dependencies in the soil BS were documented only for 
temperatures and other soil properties only while closer, 
but negative correlations with regard to the precipitation 
characteristics and acid deposition were identified. 

The spatial distribution of TPAD constituents is di-
rectly proportional to the generalized distribution of soil 
BS values in the 1×1 km grid. On one hand, soil BS ap-
pears to be dependent on the permanent soil conditions 
expressed using SC and CEC while, on the other hand, 
its distribution also corresponds statistically more signifi-
cantly with the distribution of SOx in TPAD than in humus. 
The acid deposition influence on soil BS values is statisti-
cally higher than the actual influence of total supplies of 
the base substances. No linear correlations were identified 
between the precipitation characteristics and TPAD; nev-
ertheless, the distribution of SOx correlated significantly 
with Pv and Pw and it was found correlated negatively with 
the distribution of soil BS values and clay content. The 
closer positive correlation of SOx and Pw implies that its 
input into forest ecosystems is still relatively significant 
namely in the winter season (Table 2). 

The negative correlations of Corg content in  surface 
humus provide evidence that raw humus forms usually 
occur on poor soils accompanied by the occurrence of co-
nifer stands or in the mountains in the territory of the CR. 

Figure 3. The single and Ward’s clustering of the cumulated predictors and receptor matrices
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Nevertheless, the positive correlation between the BS of 
surface humus and in the mineral soil horizons provides 
evidence that the humus receptor properties are, to a cer-
tain level, permanently dependent on a persistent poten-
tial of the site fertility capacity characterized by several 
soil properties. 

Regression Models
Generalization of predictors influenced directly the 

credibility of the estimated forest ecosystem state. The 
confidence intervals of linear approximations between the 
predictors and receptor divided 1×1 km grid into areas of 
dense, optimum or scarce forest biomass, and into outli-
ers of azonal ecosystems. The investigated forest biomass 
characteristics correspond largely to the abiotic condi-
tions from lowlands to uplands. Even a lower number of 
quantities sufficed to describe the forest biomass receptor 
better than the forest growth environment using a higher 
number of selected predictors. The receptor state was best 
characterized by NDVI, BS and Corg of surface humus. 
Specific predictors included almost 70% of variability, 
basic predictors 84% of variability. Also the total redun-
dancy of the canonical correlation function indicating 
higher uncertainties in the elementary quantity model was 
related to the amount of variability extraction (Table 3). 

The linear regression models of both elementary and 
cumulated quantities were loaded with heteroscedasticity 
(Figure 4). Both models had direct proportion of X and Y 
values. The regression equation of the elementary quan-
tity model had lower correlation coefficient than the equa-
tion of the cumulated quantity model, and was character-
ized by parameter -0.088. The sum of the z-scores cor-
responding to the cumulated predictor averages (Σzi = 0) 
indicates the average receptor properties, but the sum of 
the elementary predictor z-score averages indicates po-
tential improvement/aggravation of the forest state. The 
slopes of both equations were similarly lower than 1. 

Quantity MIR NDVI BShumus MgO Corg TAEhumus

T 0.42 -0.04 0.60 - -0.71 0.49
Tsp 0.42 -0.03 0.60 0.03 - -
P -0.36 0.05 -0.45 -0.02 0.53 -0.39
Pv -0.40 0.04 -0.47 -0.02 - -
Pw -0.32 0.06 -0.42 -0.02 - -
TPAD 0.00 -0.07 0.08 - -0.05 0.00
SOx 0.03 0.00 0.06 0.00 - -
SC 0.25 0.11 0.52 0.03 -0.51 0.54
BSsoil 0.20 0.15 0.55 0.02 -0.51 0.54
CEC 0.10 0.18 0.41 - -0.28 0.43
TAEsoil 0.17 0.29 0.37 - -0.19 0.37
OIGR -0.10 -0.21 -0.24 0.00 0.13 -0.08

Table 2. The Pearson correlation coefficients (bold P <0.0001) 
between particular quantities of predictors and receptor

Both canonical correlation models incline collective-
ly to underestimation of the receptor values in 46% of the 
cases. Nevertheless, the elementary quantity model also 
overestimated the forest receptor values estimated values 
in more than 47% of the cases. In approximately 30% of 
the cases the cumulated quantity model assessed the for-
est biomass in the model confidence interval and provided 
the overestimation in 24% of the cases only. The recep-
tor was characterized by quite an extracted scatter in both 
specifications. Both canonical correlation models were 
characterized by low proportions of outlying estimates 
(Figure 5). All the physical sets of the compared predic-
tors and receptor properties remained preserved naturally 
in the  model of elementary quantities while the growth 
environment characteristics in the model of cumulated 
quantities were simplified. The model of cumulated quan-
tities expressed well the relationship of forest density and 
abiotic predictors in all the lowlands and highlands in-
cluding the topography of sandstone rock cities (Table 4). 

Table 3. Canonical weights of identified canonical roots (ru) in 
generated regression functions (P  <0.00001)

Population Fun-tion Quality r1 r2 r3 r4 r5

Elementary Predictor Tsp -0.61 -0.69 0.50 -0.90

(rCCA=0.73) Pv 0.30 -0.15 0.83 -0.69

Pw -0.08 0.52 -0.19 -0.67

SOx -0.25 -0.26 0.33 0.64

BSsoil -0.34 1.06 1.02 1.05

SC 0.07 0.02 -0.75 -1.42

  OIGR172 0.19 -0.40 0.80 -0.17  

Receptor MIR -0.18 -0.65 -0.90 -0.02

NDVI 0.27 0.76 -0.70 -0.03

BShumus -0.97 0.34 0.61 0.05

    MgO -0.10 0.01 0.08 -1.00  

Cumulated Predictor T -0.84 -0.52 -0.66 -0.01 0.45

(rCCA=0.79) P 0.02 -0.09 0.06 0.42 0.90

TPAD -0.16 0.02 0.02 0.17 -0.83

SC 0.06 0.20 0.61 -1.05 0.63

BSsoil -0.38 -0.23 0.54 1.76 0.22

CEC 0.17 0.50 0.24 -0.26 -0.75

TAEsoil 0.06 0.68 -0.48 -0.50 -0.05

  OIGR172 0.12 -0.34 0.69 -0.24 -0.23

Recep-tor MIR -0.03 -0.02 -0.57 -1.01 -0.07

NDVI 0.28 0.56 -0.31 0.07 0.82

BShumus -0.33 0.68 -0.67 0.84 -1.23

Corg 0.66 0.80 -0.11 -0.35 -1.05

    TAEhumus -0.12 0.33 1.13 -0.77 0.10
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Figure 4. Linear regressions between weighted averages of predictors (X) and receptor (Y) with graphs of residuum’s analyses. Y’i 
is approximation of Y; ei is residuum from difference (Y’i - Yi)

Figure 5. Compositions of the forest state classi-
fication based on confidence intervals of the linear 
regression between canonical functions of selected 
predictors and receptor
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Table 4. Basic characteristics of the discussed forestland regions in the Czech Republic

No Investigated region Total area (km2) Forest cover (%) Geomorphology Discussed results

  1 Děčín Upland 80.0 97.0 broken  plateau Zapletal (2006)
  2 Lužice Mts. 212.0 63.0 broken  plateau Zapletal (2006)
  3 Jizera Mts. 536.8 74.0 mountains Borůvka et al. (2007)
  4 Jičín Upland 2187.6 39.0 upland Zapletal (2006)
  5 Giant Mts. 407.5 79.0 mountains Purdon et al. (2004)
  6 Orlické hory Mts. 385.9 55.0 mountains Lochman et al. (2004)
  7 Králický Sněžník Mts. 76.0 78.0 mountains Reininger et al. (2011)
  8 Rychleby Mts. 276.0 69.0 upland Hédl (2004)
  9 Hrubý Jeseník Mts. 612.0 82.0 mountains Reininger et al. (2011)
10 Nízký Jeseník Mts. 2714.7 35.6 upland unpublished data by FMI
11 Moravian-Silesian Beskids 8243.2 75.2 upland Purdon et al. (2004)
12 Ore Mts. 1800.2 66.9 mountains Bridges et al. (2002)
13 Doupov Mts. 697.1 25.9 upland Hruška et al. (2001)
14 Křivoklát Hillycountry 1549.9 38.7 hillycountry unpublished data by FMI
15 Svatojiřský forest 18.5 92.0 hillycountry unpublished data by FMI
16 Třebechovice plateau 374.0 54.0 hillycountry unpublished data by FMI
17 Iron Mts. 580.0 51.0 upland Hruška et al. (2001)
18 Žďár Hills 709.0 46.0 upland Zapletal (2006)
19 Drahany Upland 1579.1 55.4 upland Drápelová et al. (2010)
20 Hostýnsko-vsetínské vrchy Hills 1339.6 52.3 upland Erisman et al. (2005)
21 Český les Mts. 1082.4 60.2 upland Fiala et al. (2009)
22 Brdy Mts. 982.9 65.8 upland Keller et al. (1997)
23 Tábor Hillycountry 1599.0 41.0 hillycountry Evans et al. (2001)
24 Bohemian-Moravian Upland 7823.7 33.7 upland Mauer et al. (2007)
25 Chřiby Mts. 1249.1 30.8 upland unpublished data by FMI
26 Šumava Mts. 2113.0 66.4 mountains Purdon et al. (2004)
27 Novohradské hory Mts. 144.5 81.4 upland Smidt and Herman (2004)
28 Pošumaví Hills 2809.2 35.2 upland Evans et al. (2001)
29 Javořice Upland 374.0 52.0 upland Lochman et al. (2002)
30 Libín Mt. 80.1 88.0 mountains Evans et al. (2001)
31 Dyje-Morava plain 2945.5 13.9 lowland Smidt and Herman (2004)

Discussion

Forest ecosystem state indication
The proposed static canonical correlation models ei-

ther underestimated, or overestimated and/or closely ap-
proximated the forest ecosystem state. Close f(Y) = f(X) 
approximation indicated a forest state corresponding to 
basic abiotic predictors. Underestimated forest state ap-
proximation indicated a denser forest biomass than the 
modelled estimation of relation between the selected abi-
otic predictors and receptor properties in areas with pre-
served refugia of natural vegetation. Overestimated forest 
state approximation indicated scarcer forest biomass than 
the modelled estimation of relation between the selected 
abiotic predictors and receptor properties in areas with 
prevailing unnatural stands. 

The underestimated approximation meant that the 
model revealed scarcer biomass of forest stands than the 
submatrix of the receptor properties. The forest ecosystem 
state in these territories is more optimum than that indi-
cated by the predictors. A coherent underestimated ap-
proximation in the specific forest ecosystem properties oc-
curred in the Šumava Mts., Tábor Hillycountry, Křivoklát 
Hillycountry, Doupov Mts., Ore Mts., in the western half 
of the Lužice Mts., in the  Jizera Mts., Rychleby Mts., 
in the western parts of Hrubý Jeseník Mts., in the east-
ern Drahany Upland, in the central part of Chřiby Mts., 
Hostýnsko-vsetínské vrchy Hills, and along the Radhošť 
Plateau of the Moravian-Silesian Beskids continually. 
The underestimated approximation in the forest ecosys-
tem basic properties was very similar, more continuous 
on the North-Eastern slopes of the Ore Mts., in the Děčín 
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Figure 6. The mapped forest state classification and selected discussed regions in the Czech Republic. For information about the 
regions see Table 4

tions even more (Modrzyński 2003, Bridges et al. 2002; 
Borůvka et al. 2007, Fiala et al. 2009). Local large-areal 
closed young-growth stands on the restored clearing after 
unregulated fellings and continuous natural forests con-

Upland, along the entire Lužice Mts. as well in the Giant 
Mts. and Orlické hory Mts. (Figure 6). These regions were 
repeatedly affected by air pollution or gale disasters that 
disrupted the cultivated, poorly structured forest planta-
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tributed to indication of the more optimum state of other 
stands in the wider surroundings (Hédl 2004, Purdon et al. 
2004, Reininger et al. 2011).

The overestimated approximation meant that the 
model showed denser biomass of forest stands than the 
submatrix of the receptor properties. The forest ecosystem 
state in these territories is less optimum than that indi-
cated by the predictors. Overestimated approximation in 
the forest ecosystem specific properties occurred namely 
in the Český les Mts., the southern edge of the Ore Mts., 
in the Brdy Mts., in a wide range from the Novohradské 
hory Mts., in the south through the Bohemian-Moravian 
Upland, Iron Mts. and Třebechovice plateau up to the 
Děčín Upland, Jičín Upland, Hrubý Jeseník and Králický 
Sněžník Mts. on the north, and up to the central parts of 
the Beskids in the eastern territory of the CR. The over-
estimated approximation of the forest ecosystem basic 
properties was limited to the Beskids, Hrubý Jeseník Mts., 
Český les Mts., southern Brdy, Žďár Hills, Javořice Up-
land, and Pošumaví Hills. Managed spruce or pine stands 
dominate in these regions (Keller et al. 1997, Hruška et al. 
2001, Mauer et al. 2007). 

Outlier classifications of the regression functions 
usually occurred at isolated points only in the Libín Mt., 
in the Svatojiřský forest, on the northern hillside of the 
Jizera Mts., and in the Dyje-Morava plain. Outliers f(Y) = 
f(X) occurred in azonal floodplain forests or pine forests, 
large-areal ravine forests, waterlogged forests and moor-
lands, which are ecological hot spots at the same time 
(Evans et al. 2001, Smidt and Herman 2004). The CCA of 
forest ecosystem basic properties was used to distinction 
of concentrated disrupted forests on the Jizera Massif in 
the Jizera Mts. (Borůvka et al. 2007), on the plateau of the 
Ore Mts. (Bridges et al. 2002), the windthrown region of 
Trojmezí in the Šumava Mts. (Fiala et al. 2009) as well as 
the spruce decline epicentres in the Drahany Upland, Níz-
ký Jeseník Mts., and in  the Beskids (Akgöz et al. 1995, 
Purdon et al. 2004, Drápelová et al. 2010).

Advantages of the static modelling
The main advantage of the proposed static model-

ling by CCA is the transparent analysis of the relation-
ships between the selected predictors and receptor. The 
specific features of the proposed model consist in the 
equal probability of the forest ecosystem state estimation 
in each 1×1 km cell, the inclusion of variables manifested 
in large areas with relatively low spatial gradients, and 
TPAD monitoring in  synergy with other abiotic predic-
tors differentiating it from the conventional critical load 
models by EMEP-LRTAP. The forest ecosystem critical 
load models in the territory of the CR are extrapolated 
predominantly from unnatural spruce stands, where levels 
of the critical loads are adapted to spruce response but 
not to another tree species (Purdon et al. 2004, Smidt and 

Herman 2004, Erisman et al. 2005). On the contrary, the 
static CCA model used the characteristics of total forest 
biomass including all the occurring tree species. It was 
the forests in the mountain altitudes that usually tended 
to interpretation errors. In the mountain conditions of the 
CR, most of the forest area as well as natural forests with 
dense biomass stock in rugged reliefs, and loose spruce 
groves and shrubbery with naturally low biomass along 
the upper tree limit, are preserved. Therefore, a mosaic of 
cells indicating more optimum forest state together with 
cells indicating non-optimum forest state appeared in the 
mountain locations.

The selected abiotic predictors may be stable in short 
time intervals on a small scale, but on the large scale in-
cluded in the 1×1 km grid, slight differences of properties 
prevail among adjacent grid cells. Chemical interactions 
of TPAD constituents with  atmospheric water were the 
cause of low spatial gradients of the selected predictors. 
Presence of SOx in the forest growth environment appears 
to be more medium-term significant than nitrogen deposi-
tion. Although nitrogen critical loads are exceeded on a 
regular basis, they were not manifested with the necessary 
factor loads in the multivariate selection. Also TPAD was 
not indicated by FA as significantly correlating with the 
other quantities, but CLU failed to confirm this result. The 
distribution of TPAD in the territory of the CR is close to 
the distribution of annual precipitation or, if the Ward’s 
method is applied, it is also similar to the distribution of 
Corg and Nt. Considering the indication of environmental 
pollution hot spots will single out localities with signifi-
cantly different ecological conditions from the general-
ized model potentially better than the indication of outli-
ers using quantities with low space gradients. 

Disadvantages of the static modelling
The main disadvantage of the used approach of static 

modelling consists in the uncertainty of the forest ecosys-
tem state in areas with close f(Y) = f(X) equation approxi-
mation, when the CCA model from cumulated quantities 
is compared with the CCA model from elementary quanti-
ties. The model uncertainties were caused by the overesti-
mation of conifer stand occurrences in the modelling grid 
and ignoring the error matrix. Assignment of the theoreti-
cally corresponding average values of the humus prop-
erties emphasized artificially the relationship of conifers 
with the soil surface. Generalization of the remote sensing 
data may not have corresponded with this forest state gen-
eralization in numerous cases. While the generalization of 
the information on stand density and forest volume led to 
schematization and pronounced simplification of the tree 
species composition of forests, the remote sensing data 
generalization conversely resulted in the acquisition of 
compound values. This gave rise to inaccuracies in the 
receptor indication. These inaccuracies caused exclusion 
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of the forest vegetation biomass parameters identified by 
a field survey from the receptor specification. 

The generalization executed from the data  transfor-
mation into the 1×1 km grid as well as LR caused a loss of 
certain anomalies that could indicate the non-repeatable 
and ecologically important local extremes (Thalib et al. 
1999). The proposed CCA models do not work with direc-
tions of predictor actions, so they fail to determine sourc-
es of forest damage. Hot spots in critical ecosystem load 
models comprise pollutants which do not travel far from 
the source or which encounter high terrain elevations. The 
statistical distinction of hot spot emission sources from 
critical deposits outside these sources requires stable 
source production and stable conditions in the environ-
ment. Under such conditions, hot spots with stable occur-
rence are the sources of pollution at the same time (Pol-
lice 2011). Heavy metals with locally high concentration 
gradients have a distribution close to normal only on the 
small scale, while on the large scale the distribution has a 
sharp sinistral slope, therefore, the large-scale model con-
cept in the 1×1 km grid is better described by TPAD con-
stituents according to EMEP-LRTAP (Gauger et al. 2002).

The model of the forest ecosystem specific properties 
indicated trend of forest ecosystem state change in 94% 
of evaluated cells, although the model of the basic prop-
erties indicated trend in the 69% of cells only. Although 
linear correlations between elementary quantity assign-
ments were more significant, they also included higher 
uncertainties, which the CCA model of cumulated quanti-
ties expressed in a higher number of weights. The biggest 
differences between both CCA models were due to the 
weights of atmospheric precipitation, temperatures, acid 
deposit constituents and soil BS (Table 4). Although the 
calculation of multiple weights of the f(Y) = f(X) function 
extracted more uncertainties, the weight with the highest 
achieved confidence still contained an uncertain compo-
nent, the omission of which led to various deviations in 
further analyses (Smith et al. 2011). Despite the described 
deficiencies the statistical approximations appear to pro-
vide a convenient supporting means that allow estimation 
of the occurrence of functional dependencies between in-
dividual forest ecosystem constituents.

Conclusion

The multivariate static modelling characterizes trend 
of forest ecosystem change and it provides base for sus-
tainable forest management. The forest ecosystem state 
was closely approximated by canonical correlation analy-
sis in the lowlands and uplands. The CCA indicates poten-
tial deviations between optimum forest state and distur-
bances in altitudinal differentiated areas. Slight deviations 
to the function were mainly concentrated in the highland 
and main mountain systems of the CR. Outliers occurred 

separately in the territories with concentrated occurrences 
of floodplains, ravine forests and moorlands. Overestima-
tion of the function is indicative of a non-optimum forest 
state, while underestimation of the function is indicative 
of a more optimum forest state. The CCA models allow 
basic static simulations of the forest ecosystem response 
to growth conditions change. The specific predictors of 
spring temperatures, annual precipitation during vegeta-
tion period and during winter, SOx, and soil BS indicated 
forest ecosystem state deviation in 1×1 km grid better than 
basic predictors. The basic predictors of average tempera-
tures, annual precipitation, total potential acid deposition, 
soil BS, CEC and total content of acid elements indicated 
distinctly more equilibrium forest ecosystem state and 
lower contribution of outliers. The static modelling pro-
vides base for formulation of objectives of the measures 
necessary for receptor state change to make it more re-
sponsive to abiotic predictors of growth conditions. Re-
duction of TPAD and altered tree species compositions 
that will increase the values of NDVI, surface humus and 
soil base saturation and Corg content may contribute to the 
indication of correspondence in environmental influences 
on forest state.
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